近年来,随着人工智能技术的飞速发展,深度神经网络技术在图像分析、语音识别、自然语言理解等难点问题中都取得了十分显著的应用成果。本书系统地介绍了深度学习应用于机器人环境感知面临的难点与挑战,针对性地提出基于正则化深度学习的机器人环境感知方法,并结合机器人作业场景分类、多任务协同环境感知、机器人导航避障环境深度恢复、感知目
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换。每章内容包括:1.基本要求与内容提要,简要介绍每一章的基本要求和内容;2.典型例题与解题方法,对应掌握的重点以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析;3.教材习题同步解析
《工科数学分析》是“工科数学分析”或“高等数学”课程教材,分为上、下两册。上册以单变量函数为主要研究对象,内容包括函数、极限与连续,导数与微分,微分中值定理与导数的应用,定积分与不定积分,常微分方程等。下册侧重刻画多变量函数,从向量代数与空间解析几何开始,介绍多元函数微分学、重积分、曲线积分与曲面积分和级数等。《工科数
本书为韩山师范学院数学与统计学院选修课教材和考研参考书。全书以专题选讲的形式,选择了数列极限与函数极限、连续与一致连续、导数与微分、定积分、级数、一致收敛、多元微积分七个专题,每个专题介绍概念和理论,并重点选取了典型案例讲解,全书非常具有实用性,学生针对这七个专题,能进行针对性的案例学习,加深理解。
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等.全书共分三册.本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与Fourier级数.书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,
本书第1章至第6章为实变函数与泛函分析的基本内容,包括集合与测度、可测函数、Lebesgue积分、线性赋范空间、内积空间、有界线性算子与有界线性泛画等.第7章介绍了Banach空间中的微分和积分,第8章介绍了泛函极值的相关内容.本书循着几何、代数、分析中熟悉的线索介绍了泛函分析的基本理论与非线性泛函分析的初步知识。
依托昆明轨道交通4号线火车北站工程,对富水圆砾地层明挖长大地铁车站深大基坑施工控制技术展开一系列研究,并撰写成专著,主要内容包括如下:(1)长大地铁车站深大基坑围护结构地下连续墙施工关键技术;(2)富水圆砾地层深大基坑合理开挖工法及基坑稳定性研究;(3)复杂地质条件下长大地铁车站深大基坑安全支护体系研究;(4)富水圆砾
《微积分》共8章,前6章为一元函数微积分部分,包含一元函数连续、求导、积分及其应用,微分方程简介等内容;后2章为多元函数微积分部分,主要讲述多元函数偏导数及二重积分的计算等。
微分Galois理论在最近的数十年中已经成为诸多方向上的研究热点。本书是自封闭的,通过展示Picard-Vessiot理论,即线性偏微分方程的Galois理论,将读者带入主题。书中的第一部分和第二部分给出了所需的代数几何和代数群的先导知识,第三部分包括Picard-Vessiot扩张、Picard-Vessiot理论的
本书是普通高等教育“十一五”国家级规划教材,全书在第二版的基础上,根据最新的“工科类本科数学基础课程教学基本要求”和科技人才对数学素质的要求,本着面向21世纪深化课程体系与教学内容改革的精神,吸收国内外相关教材的长处修订而成。其主要特点是:注意课程体系结构与教学内容的整体优化;重视基础,突出数学思想与方法,着力于数学素