本书是《现代几何学——方法和应用》三卷本的第三卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
本书是《现代几何学——方法和应用》三卷本的第一卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
本书是《现代几何学——方法和应用》三卷本的第二卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
《离散与计算几何手册——第三版(英文套装上中下)》涵盖了离散和计算几何两个领域的广泛主题,还有很多应用领域中的主题,具体包括几何数据结构、多胞腔和多面体、凸包和三角剖分算法、填装和覆盖、沃罗诺伊图式、组合几何问题、计算凸性、最短路径和网络、计算实代数几何、几何排列及其复杂性、几何重构问题、随机化和去随机化技术、射线射击
本书是美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作。
本书介绍张量的概念、张量的性质,以基矢分析为主导,对张量的微分积分,场论性质(梯度、散度、旋度),曲面张量的特性,以及连续介质力学方面的张量微积分都作了作详尽的分析。本书分为五章,内容为:第一章矢量和张量,第二章二阶张量,第三章张量分析,第四章张量对时间的导数,第五章曲面张量。全书系统性强,概念清晰,推理严谨。书末习题
纽结理论是数学学科代数拓扑的一个分支,按照数学上的术语来说,是研究如何把若干个圆环嵌入到三维实欧氏空间中去的数学分支。纽结理论在现代数学中发挥了很大的作用,人们已经在过去的20年中得到了有关这个理论的最有意义的结果。本书的目的是描述现代纽结理论的主要概念,以及对初学者和专业学者来说都很有用的完整的证明。本书的大部分内容
从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学……但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的……如果知道讨论对象的具体背景,则有可能掌握其实质……若停留在初等数学水平
本书分为三个部分,第一部分内容验证了内诣零流形M的(连续)自映射f:M→M的阿诺索夫关系,回顾了内诣零流形的主要性质和定义,还展示了内诣零流形与可解流形是不同的;第二部分内容给出了有两种可能的方式去推广阿诺索夫定理,第一种方式是寻找流形类,而不是诣零流形,这就使该关系对已知流形的所有连续映射都成立;第三部分内容集中讨论
本书内容取舍以应用为目的,结合专业需要,优化教材结构,突出实践性和实用性。本书的图例一部分来自实际工程,另一部分来自课堂教学和学生作业。本书分为10个章节,内容包括画法几何的基础知识、三面投影与轴测图、透视的基础知识、平行透视、成角透视、倾斜透视、曲线透视、阴影透视,以及点、直线和平面的透视等,并在每个章节后附加了练习