从建立之初,量子群论已成为现代数学中最吸引人的论题之一,而它的大量应用有时竟包括了像低维拓扑和数学物理这些完全不同的领域。本书是直接面向没有此学科基本知识的学生最早的著作之一。除了线性代数外,预备知识仅仅要求熟悉一点经典的复半单李代数理论。从sl_2的量子类比着手,作者通过所有必要的细节细心引导读者去充分了解这个学科,
作为作者获奖书AlgebraicTheoryofQuadraticForms(Benjamin,1973)的新版,本书给出了在特征非2的任意域上的二次型理论的一个现代、自足的导引。从除了线性代数外的少量预备知识出发,作者讲述了一个专家级的课程,内容从二次型的Witt经典理论、四元数与Clifford代数、形式实域的Ar
对齐性空间的研究使我们对微分几何和李群有了更深的了解。例如,在几何方面,一般性的定理和性质对于齐性空间也都成立,并且在这个架构上通常更容易理解和证明。在李群方面,相当多的分析或者开始于或者归结到齐性空间(通常是对称空间)上。多年来,对很多数学家来说,这本经典著作已经是、也会继续是这方面资料的标准来源。作者从对微分几何的
Wolstenholme定理是数论中与素数有关的著名定理,可以利用多种方法对其进行证明。例如,多项式的方法,幂级数的方法以及群论的方法。本书利用初等数论的知识给出了它的一个简单证明,并对其进行了推广。
本书应用迦罗瓦理论清晰透彻地论述了两个古典难题的解决方法,即寻找代数方程的求根公式和限用圆规直尺作图(如三等分任意角、把立方体体积加倍、化圆为正方形,以及作正多边形等),并借此由浅入深地向读者介绍了一些抽象代数的基本知识和研究方法。
本书在给出半群和格的基础知识和基本理论后,有选择地介绍了π逆半群(包括逆半群)的π逆子半群格方面的若干**研究成果。全书共分七章。*章介绍了格、半群、拟周期半群和逆半群的基础知识和基本理论;第二章首先介绍了π逆半群的基本性质,然后利用这些性质研究了具有某些类型π逆子半群格的π逆半群的特性及结构;第二章介绍了具有某些类型
本书分两部分。*部分介绍代数的Hochschild同调与上同调,其中包括三类特殊Koszul代数的Hochschild同调和上同调群的计算,以及两类代数的Hochschild上同调环的结构刻画。第二部分介绍代数的模-相对Hochschild同调与上同调及形式光滑性问题,着重介绍儿类特殊构造下代数的模-相对Hochsch
本书根据张乾二院士长期为厦门大学化学系研究生开设的群论课程讲义整理而成。本书主要介绍有限群的基础知识,特别是群的表示理论、分子对称群、置换群的不可约表示等,还介绍群论在分子轨道理论、晶体结构、分子光谱及基本粒子中的应用。各章均附有习题供读者参考使用。
本书是根据计算机类专业对离散数学的教学要求编写而成的。全书共7章,主要内容包括命题逻辑、谓词逻辑、集合、关系、函数、图论和树等。本书在叙述上深入浅出,简明扼要,并以众多的实例解释概念,使抽象理论转化为直观的认识,力求培养学生抽象思维、缜密概括和严密的逻辑推理能力,增强学生使用离散数学知识分析问题和解决问题的能力,为今后
本书完整地介绍了素数判定问题的全部历史和理论,阐明了它在纯数学研究和应用数学研究中的地位,及其在当代科学中的实用价值(如在密码学中的作用)。全书内容丰富,论述严整。