本书是作者在多年从事空间系绳系统动力学与控制理论和实践研究的基础上撰写而成的,较全面地介绍了空间系绳系统动力学建模、控制和仿真分析方法。本书主要内容包括空间系绳系统动力学建模、空间系绳系统标称展开轨迹设计、空间系绳系统舱体辅助返回的展开过程计算及仿真、空间系绳系统小卫星辅助空间发射的展开过程计算及仿真分析、空间系绳系统
本书根据理工科研究生学科发展要求,结合编者多年的教学实践经验编写。内容包括:线性空间与线性变换、向量和矩阵的范数、矩阵分析及其简单应用、矩阵分解、矩阵特征值的估计与对称矩阵的极性、广义逆矩阵、矩阵在数学建模中的应用,附录为基于Matlab的矩阵计算.全书简明扼要、条理清楚、方便学习。
本书主要面向应用型本科人才的培养。内容包括:行列式、矩阵及初等变换法、求解线性方程组的理论与方法、向量的相关性理论、矩阵的特征值问题及二次型化标准形方法等。
《M-矩阵(张量)*小特征值估计及其相关问题研究》所研究的问题是数值代数和矩阵分析中重要的研究课题之一,其内容共7章,包括M-矩阵(张量)的基本性质与预备知识,非奇异M-矩阵及其逆矩阵Hadamard积的小特征值估计,对角占优M-矩阵的逆矩阵的无穷大范数估计,对角占优矩阵的行列式估计,非奇异M-矩阵的小特征值估计,解系
《离散数学及其应用》全面系统地介绍了离散数学的基本理论与应用技术,内容主要包括集合与关系理论、组合计算方法与应用、整数与算法设计知识、数理逻辑演算与推理、图模型的基本理论与算法、抽象代数的基础知识等。《离散数学及其应用》注重知识的应用性、表达的可读性和体系的完备性,将分布在不同数学分支的离散数学知识点进行凝练和优化,形
全书系统地介绍了离散数学的四个部分共8章组成,其中第1~3章为集合论、第4~5章为数理逻辑、第6~7章为图论、第8章为代数系统。各章分别介绍了离散数学的核心知识单元:集合、关系、函数、命题逻辑、谓词逻辑、图、特殊图、代数系统中的群、环、域、格等,并且介绍了每章离散数学的知识单元在计算机与软件系统中的应用,以及给出相关历
《趣味代数学》是俄罗斯著名科普作家别莱利曼百余部作品之一。本书的目标一方面就是要搞清、重温并且巩固这些不连贯的和不踏实的知识,但是主要目标还是培养读者对代数课的兴趣,并且引起他按照教科书补充欠缺知识。书中取材别致而能激起好奇心的数学问题,数学史领域里有趣的涉猎,代数在实际生活上意料不到的应用等等。本书采用多种多样生动的
本书是《有向几何学》系列成果之二。在《平面有向几何学》等研究的基础上,创造性地、广泛地运用有向面积法和有向面积定值法,对平面有关问题进行研究,得到了一系列的有关三角形、多边形和多角形有向面积的定值理,揭示了这些定理与经典数学问题、数学定理和一大批数学竞赛题之间的联系,使这些经典数学问题、数学定理和数学竞赛题得到了推广、
本书内容包括:多项式;行列式;矩阵;向量与线性方程组;向量空间;仿真的标准形;内积空间;二次型。
由李秀昌主编的《线性代数(供中药学药学类制药工程类医学类管理类等专业用**0版全国高等中医药院校规划教材)》全书共分8章,主要包括行列式、矩阵、线性方程组、向量及向量空间、相似矩阵、二次型、线性代数实验,主要介绍线性代数中的基本概念、定理和方法。书中力求在知识结构严谨的基础上,内容丰富、知识点突出、难点详略得DANG*