《H?lder定理/现代数学中的著名定理纵横谈丛书》对凸函数展开了详尽的叙述。《H?lder定理/现代数学中的著名定理纵横谈丛书》共分三编:凸函数、再论凸函数、凸集与凸区域。6个附录主要介绍了凸函数的新性质和一些相关猜想、公开问题。通过介绍凸函数的定理、性质,引出凸函数与其他相关定理之间的关系和凸函数的众多应用。《H?
《测度论》是一部为初学者提供学习测度论的入门书籍,综合性强,清晰易懂。本版与第1版相比,篇幅扩展100页,并新增概率一章。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分;第六章讲述微分知识,包括Rd上变量的处理。每章末附有代表性的习题,从常规题型到扩展训练都有涉及,较高难
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭
《常微分方程基本问题与注释》是作者在上海师范大学主讲数学专业本科生常微分方程课程的教学与学习配套用书,所采用教材是作者与合作者所编写的《常微分方程》(高等教育出版社).《常微分方程基本问题与注释》的主要内容可分为两部分.一部分是针对教材的每一节内容列出了五个基本问题,供学生课前预习时参考,通过问题引领,有的放矢地让学生
本书主要讲授了柯西函数方程,及由此衍生的诸多问题,本书透过柯西函数方程,向读者勾勒出柯西函数方程的发展历程及相关理论,展示了函数方程在数学思想中的重要性。
《Lyapunov稳定性定理/现代数学中的著名定理纵横谈丛书》介绍了在数学和自动控制领域中一个重要的内容——李雅普诺夫(Lyapunov)稳定性定理.《Lyapunov稳定性定理/现代数学中的著名定理纵横谈丛书》分别从线性动态系统的稳定性、常微分方程的稳定性等几方面详细介绍李雅普诺夫稳定性,并结合实例,使理论知识更易理
本书详细介绍了柯西不等式的几种重要变形、柯西不等式的推广及其应用、与其他不等式的联合运用、排序不等式、排序不等式的应用、排序思想的应用、切比雪夫不等式及其应用、*竞赛题选讲等内容,而且在重要章节后面都有相应的习题解答或提示。
本书详细介绍了Kantorovic不等式的相关知识及应用.全书共分4章,读者可以较全面地了解这类问题的实质,并且还可以认识到它在其他学科中的应用.
对完全非线性波动方程具小初值的Cauchy问题,提出了整体迭代法这一简明的求解框架,对一切空间维数n1及一切非线性右端项的整数幂次p2,得到了经典解的整体存在性或其生命跨度的*估计,完满地解决了这一在理论及应用两方面均极具重要性的课题。
本书用现代数学观点阐述常微分方程论中的一些基本问题,全书共五章:基本概念,基本理论,线性系统,基本定理的证明和流形上的微分方程。