解析几何习题全解(第2版)
“美英早期教科书研究系列”,由汪晓勤教授及其研究团队撰写,拟分为四册,分别为代数、几何、三角和解析几何,主要通过概念篇、方法篇、公式篇、定理篇、思想篇和数学文化等各方面对知识的引入、演变、对比等进行细致的研究与介绍,得出相关的结论和启示,以期为教科书的编写以及教学设计等提供借鉴。 例如代数分册,概念篇包括负数、无理数
"数学家Dieudonné(迪厄多内)认为:数学的二十世纪是拓扑学的世纪。拓扑学已渗透到数学的方方面面,不熟悉这种语言,将很难了解现代的数学。本书的主要内容是讲述拓扑空间和它们之间的连续映射,务求用最现代的数学语言来表达。因为拓扑空间是抽象的,本书先从度量空间入手,慢慢引出拓扑的概念。本书共12章,分成4部分,每部分3
欧几里得的《几何原本》被广泛认为是成功的教科书。徐光启曾盛赞:”能精此书者,无一事不可精;好学此书者,无一事不可学。“爱因斯坦也说过:”第一次看到这本书就惊为天人。“《几何原本》全书共13卷465个命题,学生版精选了其中的精华部分,节选内容或与现代初等数学密切相关的,或是十分重要且富有启发性的,原著的公理和公设自然全部
面积法是一种有着悠久历史的传统方法。近几十年来,面积法体系得到进一步的发展,焕发出新的生命力,如今已成为平面几何中的基本方法,甚至成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具(共边定理和共角定理)以及指导思想(消点法),并辅以大量例题来说明用面积法解题的有效性。另外,书中还介绍了面积法与勾股定理、托
本书将带你超越教室里的算术题和满是灰尘的教科书,去认识那些创造了无数奇迹的最伟大的头脑。他们的故事告诉我们是什么激励和驱使他们做出了令人难以置信的发现。在这个过程中,你会遇到令人惊奇的、令人兴奋的,有时甚至是十分怪异的故事,这些故事以你从未想象过的方式将数学带入日常生活。 本书通过重要的数学家、重要的数学概念和各种形状
正如作者所介绍的S.李在1890年发现了李伪群,将其命名为偏微分方程组的变换解群。在之后的50年,只有E.嘉当(E.Cartan)和E.韦西奥(E.Vessiot)研究过这些群,但是韦西奥结构方程直到今天仍是未知的。1920年,关于偏微分方程组的形式理论已经被M.雅内(M.Janet)所倡导。物理学家E.伊诺努(E.I
本书共12章,内容包括:绪论、纽结基本知识、纽结补中的不可压缩曲面、带有Spin结构的三维流形的不变量、环链的尖括号多项式、四岔图的几乎交错投影图、Hopf链接的多项式的微分、内在纽结图和内在链环图、有限阿贝尔p-群的亏格谱、3-流形初步、3-流形的融合与本质环面结论和建议等。
本教材主要介绍拓扑学的入门知识,主要内容分为两部分,一是点集拓扑学,一是代数拓扑。前者主要介绍点集拓扑学的基本概念和方法,包括点集拓扑公理、核心概念、延拓定理、商空间等。后者只讲授代数拓扑学中同伦论的基本理论,包括同伦定义、基本群及其应用等。本教材有以下几个特点:第一:本教材以度量空间引入,比较直观,学生容易建立起相关
该书致力于研究在R2和R3中的中心仿射变换或等仿射变换下的仿射曲线不变的变分性质。它可以被认为是经典欧几里得弹性曲线研究的对应物。该书内容以作者在凯斯西储大学的博士学位论文以及作者对该主题的进一步研究为基础。