本书系统地叙述了涡度法的数学理论,内容主要分为Euler方程涡度法的收敛性,粘性分离格式的收敛性和随机涡团法的收敛性三个部分,其中包括无粘与粘性流、初值问题与初边值问题、半离散化与全离散化以及有关不可压缩流的数学理论.
本书旨在引导学生掌握数学实践与建模,以培养学生数学能力(实践能力、创新能力等),同时也旨在将数学工具软件与数学深度融合。本书是在华北水利水电大学数学实践与建模讲义的基础上修改而成,内容包括MATLAB简介及其应用、数学建模与论文写作、数学实践案例、几类常见的数学建模方法、智能算法。在内容编排上,本书精选来自工程、经济、
数学之书: 人类什么时候在绳子上打下*个结? 为什么*位女数学家会死于非命? 有可能把一个球体的内部翻转出来吗? 这些只是这本插图精美的书中涉及到众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史*重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的*古怪的问题,从公元前一亿五千万年到*的前沿突破。 数
本书是在1996年第六版《常微分方程》(德文)一书的基础上编写而成的。本书主要介绍了常微分方程的基础理论,内容包括:可积一阶微分方程,微分方程解的存在性和*性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。此外,本书还增加了在一般相关教材中很少涉及但具有一定难度的内容,并对一些复杂基本定理给出了新
线性模型是现代统计学中一类重要的模型,广泛地应用于经济,金融,生物、医学和工程技术等领域。在该模型的建模分析中,统计学家主要研究模型的参数估计理论,假设检验以及未来观察值的预测等统计推断问题。相比较,参数的假设检验以及未来观察值的预测问题研究更多的依赖于参数估计的结果。因此,模型的参数估计理论在整个建模分析过程中起到重
微分拓扑学有三个主要的研究领域:纤维丛、复流形和微分流形。本书对应用于微分流形和微分映射研究的拓扑学,对其基本思想作了全面的介绍,书中体现了作者的独特简明风格和独立的观点。取材得当,结构清晰,例题精彩,习题丰富,并尽量不使用代数拓扑的方法而是把几何分析内容提炼成一些数值不变量入手。目次:①流域和映射,②函数空间,③横割
本书在借鉴国内外相关教材优点的基础上,总结作者多年从事经济管理类各专业应用时间序列分析课程的教学经验和体会,本着“教师好用、学生好读”的指导思想,从经济管理类各专业的实际需要出发,系统地介绍了平稳时间序列建模分析、非平稳时间序列建模分析和波动聚集建模分析三大部分内容。全书既涵盖了时间序列分析的经典内容,又反映了20世纪
本书系统地介绍了自然边界元方法的数学理论,总结了作者十余年来在这一方向的研究成果,包括椭圆边值问题的自然边界归化原理、强奇异积分的数值计算、对调和方程边值问题、重调和方程边值问题、平面弹性问题和Stokes问题的应用,以及自然边界元与有限元耦合法等内容.
本书是在《普通化学实验》(第三版)基础上,结合最新的普通化学实验教学基本要求修订而成的。修订后的教材,保留了第三版的风格与特点,并配合浙江大学普通化学教研组编《普通化学》最新版教材,在实验内容上做了调整与补充。全书共有26个实验项目。本书可作为普通高等学校理工类非化学化工专业的普通化学实验课程教材,也可供相关专业开设同
本书分上、下两册,是在第五版的基础上修订而成的,在内容和体例上未作较大变动。知识内容稍有扩充,涉及的方面很广。增加了少量的说明性文字,使内容更加完善。适当补充数字资源,以图标示意。下册内容包括:级数、多元函数微分学、隐函数、反常积分与含参变量的积分、重积分、曲线积分与曲面积分等。本书阐述细致,范例较多,便于自学,可作为