方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);deMorgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey拓扑
《拓扑群引论(第二版)》介绍了拓扑群的基本概念、测度与积分、拓扑群(特别是紧、局部紧的拓扑群)的表示,同时讨论齐性空间、群代数和K理论的一些相关结果.内容由浅入深,直至近代的重要成果.
《类域论(英文版)》将gauss、legendre和其他的二次和更高阶的互反率巧妙结合,并将这些结果更加一般化,是学习类域理论的入门书籍。《类域论(英文版)》运用传统方法和原始技巧呈现书中的材料,思路清晰流畅,是这个领域的图书很难企及的。《类域论(英文版)》可以作为代数数论的研究生教程,尤其适合自学。书中有大量的练习贯
ThetheoryofgroupsandLiealgebrasisinterestingformanyreasons.Inthemathematicalviewpoint,itemploysatthesametimealgebra,analysisandgeometry.Ontheotherhand,itinterve
数学分析、高等代数与解析几何是大学数学系的三大基础课程。南开大学数学系将解析几何与高等代数统一为一门课程,此举得到了同行们的普遍认同,《高等代数与解析几何(套装上下册)(第三版)》就是力求反映这种思想的尝试。《高等代数与解析几何(套装上下册)(第三版)》分上、下册,第1章讨论多项式理论;第2章介绍行列式,包括用行列式解
《数学概览:代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。《数学概览:代数基本概念》高度原刨且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、Lie群与Lie代数、上同调、范畴论等。它
《离散数学(第2版全国普通高等院校计算机专业精品规划教材)》由朱保平、叶有培、金忠、张琨编著,本书对2006年北京理工大学出版社出版的《离散数学》中的内容进行了较多的调整与更新,并在相关章节增加了典型例题及解答,在语言文字方面做了进一步加工处理,同时修正了原教材中的部分疏漏之处。 本书介绍了离散数学的基本理论及方法,
《模曲线导引(第2版)》的目的在于介绍模形式的几何理论的背景知识。本书可供数学系的研究生作为教材,也可以供从事数论、代数几何等专业的数学工作者使用。作者在2002年出版本书第一版之后,近些年又做了大量的修订,使得该书的内容更完善更前沿。
《初等数论及应用/普通高等学校“十二五”规划教材》共分6章,包括整数及其整除性、不定方程初步、同余、同余方程、平方剩余与原根和简单连分数等内容。每一章除了配备大量的例题、习题外,还增加了许多的相关资料,集知识性与可读性于一体。 《初等数论及应用/普通高等学校“十二五”规划教材》适合作为一般本科师范院校数学专业教材,也
《线性代数及其应用/高等学校教材》介绍了行列式、矩阵、向量线性关系及矩阵的秩、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换等内容。全书涵盖了全国硕士研究生入学统一考试数学考试大纲中有关线性代数的所有内容,且书后给出了部分习题答案或提示,以便于读者自学与复习。 全书力求将数学与应用相结合,内容系统、丰