本书共分4编,对Vandermonde行列式进行了介绍,并进行了推广,得到不同的结果。主要内容包括:Vandermonde其人;Vandermonde行列式与竞赛试题;从一道全国联赛加试题谈起;Chebotarev定理等。
本书共12章,包括Fermat数、Fermat数的素性判断、Fermat数的性质研究、Fermat数与几何作图、Fermat数与梅森数和完全数、计算数论的产生、广义Fermat数、Fermat数的应用等内容。本书从Fermat数的提出开始系统地阐述了Fermat数的研究历程与推广过程,通过阅读本书可以使读者充分地理解且
本书主要阐述了麦比乌斯函数及其相关理论,并详细介绍了有关麦比乌斯函数在高等数学中的若干应用,全书共分8章,分别是麦比乌斯函数的提出与性质、练习与征解问题、应用举例、麦比乌斯函数在解析数论中的应用、短区间中的达文波特定理、麦比乌斯函数在有限域上的多项式和原根研究中的应用、有限环上的齐次重量与麦比乌斯函数、麦比乌斯函数在关
本书共4编,详述了有关Smarandache函数性质的若干研究,含有Smarandache函数的方程,有关Smarandache函数均值问题的研究,数论函数的相关结果等内容。
本书详细介绍了哈密尔顿一凯莱定理的相关知识。全书共分为5章,分别为:引言、基础篇、应用篇、人物篇与进一步的讨论,在附录中详细介绍了哈密尔顿一凯莱定理的另一证法。
本书共分四编,详细地介绍了Lagrange插值多项式的概念及相关的应用方法,主要包括差分与反差值、逼近论中的插值法、无穷区间上等距节点样条的引人内容,同时还补充介绍了形状可调的C2连续三次三角Hermite插值样条的相关内容。
本书分为六章,内容涉及矩阵的基础理论,投影阵和广义逆矩阵,不等式与极值问题,矩阵的特殊乘积与矩阵函数的微商,KyFan引理及应用,详细介绍了KyFan定理及相关理论,内容丰富且全面。本书适合高等院校理工科师生及数学爱好者研读。
本书是根据高等学校非数学类专业“线性代数”课程的教学要求和教学大纲,将新工科理念与国际化深度融合,结合山东大学数学团队多年的教学经验,并借鉴国内外优秀教材的特点编写完成.全书共6章,主要内容包括行列式、矩阵、向量与向量空间、线性方程组、矩阵的特征值与特征向量、二次型.每章最后有对应知识的MATLAB实例和核心知识点的思
本书是作者几十年从事一线数学本专科教学经验的总结和升华,是对目前线性代数教学中的难点问题展开有针对性的深入研究后的创新性成果.本书具有低起点晋级式的鲜明特色,同时有多处较大的创新,概况如下:①起点低,中学数学没有学好的学生也能通过本书的学习,循序渐进地掌握线性代数的基本内容.②循序渐进,层层递进,全书根据学生的数学基础
本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由作者近年来的辅导班笔记改写而成。本书覆盖了线性代数领域的各方面知识,因而也可作为大一新生学习线性代数时的参考书使用。全书共分六章及一个附录,每章均由知识结构网络图、基本内容与重要结论、典型例题分析选讲以及练习题精选四部分组成,为的是方便同学们总结归纳以及更好地实