本书研究的内容为非经典扩散方程在时间依赖空间中的吸引子,受到时间依赖整体吸引子的一些研究成果的启发,我们首先研究了时间依赖整体吸引子和强吸引子的存在性,之后通过调整对时间依赖函数的假设,如重新设置其下界和单调性,得到了一些在时间依赖空间中关于拉回吸引子的存在性和正则性、以及拉回吸引子和整体吸引子的上半连续性的成果,它们
梅林变换被广泛用于各种纯数学与应用数学之中,特别是应用于微分方程和积分方程、狄利克雷级数的理论中,在数学物理学、数论、数学统计学、渐进展开理论,特别是在特殊函数和积分变换的理论中都可以找到梅林变换的广泛应用。本书详细介绍了梅林变换,共3章,第一章为通式,介绍了包含任意函数的变换;第二章为初等函数,介绍了代数函数、指数函
本书主要通过Riemann猜想的历史及进展,中外名家论Riemann函数与Riemann猜想以及Riemann函数面面观三部分来介绍Riemann猜想。Riemann猜想是关于Riemann函数的零点分布的猜想.
本书共六编,包括二进制与p进制、p-adic数与赋值论、中国学者的若干研究成果、代数数论与群论中的P-adic数、p-adic方法的若干习题及解答、Setre的p-adic模形式概览。
本书共12章,包括Fermat数、Fermat数的素性判断、Fermat数的性质研究、Fermat数与几何作图、Fermat数与梅森数和完全数、计算数论的产生、广义Fermat数、Fermat数的应用等内容。本书从Fermat数的提出开始系统地阐述了Fermat数的研究历程与推广过程,通过阅读本书可以使读者充分地理解且
本书主要阐述了麦比乌斯函数及其相关理论,并详细介绍了有关麦比乌斯函数在高等数学中的若干应用,全书共分8章,分别是麦比乌斯函数的提出与性质、练习与征解问题、应用举例、麦比乌斯函数在解析数论中的应用、短区间中的达文波特定理、麦比乌斯函数在有限域上的多项式和原根研究中的应用、有限环上的齐次重量与麦比乌斯函数、麦比乌斯函数在关
本书共4编,详述了有关Smarandache函数性质的若干研究,含有Smarandache函数的方程,有关Smarandache函数均值问题的研究,数论函数的相关结果等内容。
高等代数是数学专业考研的必考课程,本书是作者在积累了多年为数学专业本科生进行高等代数考研辅导的经验的基础上编写而成的.全书共9章,包括行列式、线性方程组、矩阵、多项式、二次型、线性空间、线性变换、λ-矩阵、欧氏空间等内容.书中对很多高校近年的高等代数考研高频真题进行了分类解析,力求使读者能够举一反三,熟悉考试中经常出现
本书是高等代数课程和解析几何课程的习题训练辅导书。本书包括两个部分:代数部分和几何部分。代数部分包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等内容。几何部分包括几何空间的线性结构和度量结构、空间的平面和直线、常见曲面、坐标变换、平面二次曲线方程的化简及其类型和性质等内容。本书习题难度分
本书共分四部分,主要介绍了Hadamard行列式问题,Hadamard矩阵问题,Hadamard矩阵的推广应用及其与其他矩阵的联系等内容。具体内容包括:初等方法;Hadamard矩阵;Hadamard矩阵的性质;关于Hadamard矩阵的几个猜想等。