本书旨在向读者阐述涉及“小除数”问题的基本理论、典型方法和应用以及最新的研究成果。本书系统收录了作者在小除数理论和应用以及KAM方法的典型应用方面的研究成果。第一章,主要介绍出现小除数问题的三个重要的动力系统模型。第二章,主要介绍连分数理论和经典的小除数条件。第三章,主要介绍一维小除数理论在动力系统理论中的几个应用。第
本书是由编者参加第五届全国高校青年教师教学竞赛的教案改编而成的,也是编写团队多年教学经验的总结.本书选取了微分几何课程中的20个教学知识点,对课堂教学行为进行了精心的设计,力图增强学生对概念的直观认识和对抽象内容的理解,增加课程的趣味性,激发学生的学习兴趣,帮助学生在学习中体会科学研究的规律、感受数学思维在科学研究中的
本书内容包括:第1章,介绍了奇点理论的背景知识和研究现状,对全书的结构安排及研究内容做了介绍;第2章,主要研究了单位球丛上的勒让德曲线的渐缩线的几何性质,并且给出了具体的例子;第3章,主要研究了单位球丛上的单参数勒让德曲线族的包络线的几何性质,并且给出了具体的例子;第4章,作为单参数勒让德曲线族的推广,探讨了欧氏空间的
本书从一道清华大学自主招生试题谈起,讲述了用概率计算圆周率的一个方法——蒲丰投针问题、随机方法在解决圆周率方面的应用、一道自主招生试题、对π做统计估计的途径、图形的格与蒲丰问题、几何概率问题、平面上的运动群和运动密度等内容,通过几篇相关论文充分介绍了蒲丰问题的高维推广和应用,全书共分四编内容。
本书分为四部分,详细介绍了Masser与Oesterlé提出的ABC猜想的历史,还介绍了望月新一对ABC猜想的证明,以及望月新一的证明所引起的争议。同时本书还介绍了ABC猜想所属数学分支——代数几何的发展历史,以及一些具有代表性的人物,如:塞尔,格罗滕迪克等。通过对本书的学习,读者可以充分的了解ABC猜想的全貌,对代数
本书主要介绍了Bezout定理的相关知识及代数几何学方向的一些著名数学家。本书共分十编,主要有初中数论中的Bezout定理、代数几何学的历史、Bezout定理与几何学、中国的三位代数几何大师等。
《空间-时间-物质》是被誉为20世纪伟大的数学家之一的德国数学家赫尔曼·外尔(HermannWeyl,1885—1955)的名著《空间-时间-物质》(Raum,Zeit,Materie),是黎曼几何与广义相对论领域的著作。1916年到1917年,外尔在苏黎世联邦工学院讲授相对论课程时,力图把哲学思想、数学方法以及物理学
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿
本套书通过一种全新的方式引领读者认识几何。本套书以几何研学行夏令营为背景,让青少年生动真实地感知几何和现实世界,通过访谈和实际操作活动,体验数学的思维心理过程,通过动手动脑、交流互动,体验解证几何问题的认知策略.本套书分3册,共14章,涵盖了初等几何的主要内容。书中穿插介绍了中外数学家、几何学历史、数学文化与近代数学的
应用张量分析不会改变物理问题的本质,但会使物理概念更加明确,方程由复杂变得清晰,且在任何坐标系下具有不变性,有可能对众多领域的问题开展进一步的探讨与研究。本书系统地介绍了张量与流体力学的基本内容,主要包括两个部分:第一章至第三章是张量分析基础,研究了张量的基本概念、性质与代数运算,以及不同坐标系下的张量坐标变换等内容;