本书共分三个部分:微积分、线性代数和概率统计,具体内容包括:导数与微分、中值定理与一元函数微分学的应用、不定积分、定积分及应用、多元函数微分学、多元函数积分学、级数、微分方程、微分学的经济学应用等。
本书分为偏微分方程的一般理论和边值问题两章,主要介绍了一阶方程、高阶方程、方程组、椭圆型方程等相关内容。
本书主要介绍了数学物理偏微分方程知识,主要包括波动方程、电报方程、枢轴的振动、拉普拉斯方程、热传导方程等。
本书共分为三章,主要内容包括斯蒂尔切斯积分,集合函数与勒贝格积分,集合函数、绝对连续性、积分概念的推广。
本书共分为三章,主要内容包括行列式与方程组的解法、线性变换和二次型、群论基础和群的线性表示。
本书分为常微分方程、线性微分方程及微分方程论的补充知识两章,主要内容包括一级方程、高级微分方程及方程组、一般理论及常系数方程、借助于幂级数求积分等。
本书分为重积分、曲线积分、反常积分及依赖于参变量的积分,向量分析及场论,微分几何基础,傅里叶级数四章,理论部分叙述扼要,应用部分叙述详尽。
本书共分为三章,主要内容包括多变数函数和方阵函数、线性微分方程、特殊函数。
本书分为度量空间与赋范空间、希尔伯特空间两章,理论部分叙述扼要,应用部分叙述详尽。
本书共分六章,分别为变量与函数关系,极限论,微商概念及其应用,定积分与不定积分概念,级数及其在函数的近似计算中的应用,多元函数,复数,高等代数初步,函数的积分法。