本书为普通高等教育“十二五”规划教材。本书根据本、专科生特别是以自学为主的学生的特点,力求用通俗的语言和实际背景使学生理解其真正意义,本着由浅入深、循序渐进、通俗易懂、重点突出、难点分散、范例较多的原则,各个章节配有一定数量的习题,为了检验学生的学习效果还配备了自测题。
本书内容涉及Linlcwood.Palcy理论及其在流体动力学方程中的应用两大部分.其一包含了频率空间的局部化、Besov~lhqflOLittlewood—Paley刻画、Bony的仿积分解及仿线性化技术、新型的Bernstein不等式等.其二在Littlcwood—Palcv理论的框架下,建立输运扩散方程解的时空正
《普通高等教育公共基础课程用收:复变函数与积分变换(第2版)》是在编者多年来讲授工科复变函数与积分变换课程的基础上,遵照教育部制定的对本课程教学大纲的基本要求编写而成的。在编写过程中,我们广泛吸取了国内同类教材的主要优点,并融合了编者多年来讲授该门课程的经验和体会。考虑到工科学生学习本课程的目的主要在于实用,我们侧重了
《普通高等教育“十一五”国家级规划教材:数学物理方程(第2版)》根据编者在中国科学技术大学多年的教学经验编写而成,通过对三类典型方程的讨论,介绍求解偏微分方程定解问题的通解法,分离变量法,积分变换法,基本解方法和变分方法,以及相关的固有值问题,特殊函数和广义函数简介。《普通高等教育"十一五"国家级规划教材:数学物理方程
本书分为三册。第一册分为6章,内容包括:实数、函数、极限论、连续函数、微积分(一)、微积分(二)、不定积分;第二册分为6章,内容包括:定积分、反常积分、常数项级数、函数项级数、幂级数、Taylor级数、Fourier级数;第三册分为8章,内容包括:多元函数的极限与连续性、多元函数的微分学、隐函数存在定理、一般极值与条件
德布纳斯编著的《希尔伯特空间及其应用导论(第3版)(英文影印版)》是一部学习希尔伯特空间的入门级教程。无论是学生还是科研人员,都将从本书的特别表达中受益。本书在原来版本的基础上做了不少改动,新增加了一部分讲述Sobolev空间,展开讲述了有限维赋范空间,有关小波的一章做了全面更新。并且包括了积分和微分方程、量子力学、最
贝莱恩斯坦编著的《复变导论(英文影印版)》给出了一个全纯函数性质的概述。内容全面,囊括了微分形式、同伦理论、同调理论和全纯函数的解析性质、非同质的Cauchy-Riemann方程的可解性和子调和函数理论,引入层理论、覆盖空间和黎曼曲面。为了帮助读者更好地理解书中的材料,增加了大量不同难度的习题。
《21世纪高等院校教学基础课系列教材:复变函数论》是在遵循普通高等院校《理工科本科复变函数课程教学基本要求》的基础上,广泛参考国内外经典教材,按照新形势下教材改革精神,同时结合作者长期的教学改革实践经验编写而成的,其内容组织由浅入深,较全面、系统地介绍了解析函数的基本理论和方法。《21世纪高等院校教学基础课系列教材:复
本书是与华东师范大学数学系编《数学分析)(第四版)配套的学习指导书,主要是作为学习该课程的课后复习和提高之用。本书按主教材的章节次序编写,每节包括:内容提要、释疑解惑、范例解析、习题选解,每章后附有该章总练习题的解答及测试题。本书切合实际,针对学生学习中常见的错误、常出现的问题进行剖析、解答和指导,注意提高学生对数学分
本书是华东师范大学数学系编写的《数学分析》(第四版)的配套参考用书。数学分析是数学系最重要的一门基础课,大学本科乃至研究生阶段的许多后续课程本质上都可以看作是数学分析的延伸、深化或应用。数学分析的基本概念、思想和方法更是渗透到整个数学体系中。数学专业的后续专业课程如微分方程、概率论、泛函分析、微分几何等都要以数学分析为