本书共分六章,基本内容分为集合论、代数结构、图论和数理逻辑四大部分,全部讲授需要60学时左右。书中各部分之间有一定的联系,但也相互独立,故讲授者可以按照本书编排顺序讲授,也可以根据自己的喜好自行确定讲授顺序。每章均配有难度不等的习题,供学生练习巩固之用。由于学时限制,那些重要的但没有包括在本书中的内容(比如组合学)建议
本书是《有向几何学》系列成果之五.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n+1点集、2n+1多角形(多边形)重心线的有关问题进行深人、系统的研究,得到一系列的有关平面2n+1点集、2n+1多角形(多边形)重
本书是《有向几何学》系列成果之四.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n点集、2n多角形(多边形)重心线的有关问题进行深入、系统的研究,得到一系列的有关平面2n点集、2n多角形(多边形)重心线的有向度量定
本书侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解。
依照2018年1月颁发的《普通高等学校本科专业类教学质量国家标准》,在近20年的离散数学讲义基础上,精心整理,编撰成本书。在编写过程中,充分考虑了重点高校和普通省属院校等各类学校的学生基础、教学特点和教材改革经验,以增强本书的适用性。 本书分为数理逻辑、集合论、代数系统和图论4篇,内容包括命题逻辑、谓词逻辑、集合、二元
本书主要介绍了超图匹配的研究背景及意义和当前的研究动态。另外,本书还介绍了几类临界超图以及它们的性质,从两个相邻顶点的最小度和的角度研究了3一致超图匹配的存在性,从两个k-1子集的度和的角度研究了k一致超图匹配的存在性,并得到了一些相关结果。同时本书也给出了几个值得研究的问题,供感兴趣的读者参考。
本书从模糊集合的基本概念和性质入手,深入讨论了模糊模式识别、模糊关系与模糊映射、模糊逻辑和推理、模糊聚类与分类、模糊决策分析、模糊优化技术,以及模糊系统的建模方法,最后探讨了模糊数学在各领域的应用。模糊数学是一种以隶属度和不确定性为基础,能够描述和处理模糊、不确定和不完全信息的数学工具。通过这本书,读者可以全面理解模糊
本书内容包括模、范畴、同调代数以及层。模论方面主要介绍自由模、投射模、内射模、平坦模以及Hom与张量积;范畴论介绍了函子、自然变换以及Abel范畴;同调代数的内容包括导出函子、长正合列、Tor及Ext;层论部分主要介绍层的上同调。本书有大量习题,由易及难,书末附有部分习题答案与提示。本次修订除纠正第一版中的一些排版错误
本书为代数学引论,其主要内容为线性代数多项式理论,除在第10章介绍了环,城等基本概念外,还在最后一章介绍了群论的初步知识本书可供高等院校本科生、研究生及数学爱好者参考使用。
本书系统地介绍了矩阵论的基础理论和方法,以及其在数学学科内部和工程技术领域的应用实例,矩阵论作为本科生的线性代数课程的后续课程,在内容上以矩阵、线性变换、矩阵分解、广义逆矩阵等为核心,是线性代数课程内容的进一步深化和实用化,全书共分为7章,分别为线性空间、线性变换、典型矩阵与变换、矩阵的相似标准形、矩阵分解、矩阵的微积