本书是陈难先院士对于其科研生涯中主要的贡献——默比乌斯反演的应用的总结。但本书并没有局限于纯粹学术专著的风格,而是尽量写得通俗易懂,以激发读者对于这一美妙方法的兴趣。 20世纪80年代,人类进入信息时代,科学技术中的各种逆问题蓬勃兴起。作者运用默比乌斯反演方法使问题的解出现了新的面貌。在Nature杂志引发了整版评论。
本书从计算机科学家和工程师等应用科学家的角度介绍了线性代数的主要概念和一些重要应用,同时不失数学严谨性。计算科学家和工程师在研究和工作实践中都需要理解数学的理论概念,以便能够提出研究进展和创新解决方案,基于这一理念,本书对每一个概念都做了全面介绍,并通过一些例子补充解释。此外,书中大多数定理都是先给出严格证明,然后通过
本书系统介绍了Fi-bonacci数与更一般的Lucas序列丰富的数论性质,以及它们的Diophantus表示;并以此为基础利用可计算性理论介绍了Hilbert第十问题的否定解决,以及作者建立的11未知数定理。
斐波那契数列产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,引出了一个充满奇趣的数列,它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。本书系统地介绍了斐波那契数列的性质和应用,将知识性与趣
本书由数学通俗文章和讲话的讲稿等组成,此外还有一篇关于数学史的翻译文章和一个座谈会实录.数学通俗文章的主题有:数学概述,数学的意义;对称;几何——从熟悉到陌生;基础数学的一些过去和现状;数学——简单与高深;朗兰兹纲领寻根之旅;黎曼猜想——引无数英雄竞折腰;简说代数;表示,随处可见;几何表示论;卡兹旦-路兹蒂格理论:起源
《张奠宙文集第二卷:现代数学史与数学文化》约60万字,收录张奠宙先生写作(含合作)的130余篇文章和传记,分为三部分:第一部分是现代数学史,包括20世纪数学史、中国现代数学史、华人数理名家研究、中国数学教育史和数学家传记等;第二部分是数学文化与数学普及,包括数学文化和数学普及两大类文章;第三部分是杂论,其中包括中国科学
《张奠宙文集第一卷:数学论文与专著》约40万字,收录张奠宙先生毕生的数学科研工作成果,共分三部分。第一部分收集了从1956年到1994年张先生发表的涉及复变函数、调和分析、实变函数和泛函分析各邻域里的科研学术论文。第二部分是华东师大算子代数组的科研专著《线性算子组的联合谱》,解决了当时算子谱论对联合谱的各个重大问题,如
"本书是为数据科学与大数据技术专业编写的高等代数课程教材,主要内容由三部分组成:第一章至第七章是线性代数基础部分,包括矩阵、线性方程组、线性空间、线性映射、内积空间、特征值与特征向量和二次型等;第八章是矩阵分析选题,这部分可依据实际情况作为选讲内容;第九章是一元多项式理论初步。全书注重基本理论和方法的应用,突出了在数据
本书共4章,介绍了群论基础、环论基础、域论基础、伽罗瓦理论的相关知识。
本书为《代数学教程》第三卷,主要讨论我们熟悉的那些数系:自然数集、整数环、有理数域、实数域、复数域,以及超复数等。本书作者从数学结构的角度出发,以新颖的论述方式讲述了每一种数系的构造(运算)及其性质,建立起了严格、系统的科学数系的逻辑过程。