本书习题涉及到全国很多高校,对各种考题不仅做了题型的归纳,也对考题的方法做了归纳,全书共分9章,每章包括基本知识、习题和习题解答。
本书是Springer经典数学教材系列之一。该系列包含已出版的400多本教材,许多已经被奉为经典并该科目的标准参考书。该书对vonNeumann代数理论给出了全面而详细的介绍。几乎包含该科目的所有基本结果。对于初学着和专家来说本书都是一本非常难得的参考书。目次:一般理论;W*-代数的分类;分解理论;专题。 读者对象:
本书主要介绍生成函数的理论及其应用,生成函数是计数组合学中的基本工具。本书共分四章,分别介绍了计数,筛法,偏序集以及有理生成函数。
本书的第零章通过介绍Fermat的工作和结果,从而窥见丰富的、深奥的数的世界。第一章以Fermat的工作为起点,介绍椭圆曲线的基本知识。第二章介绍p进数及二次曲线的Hasse原理。第三章介绍了ζ函数在整点的特殊值。
本书在《数论Ⅰ》的基础上,进一步迈向现代数论的两大主题:解析方面的自守形式和代数方面的岩泽理论,以及二者之间的关系。在自守形式方面介绍了模形式、Eisenstein级数、自守形式与表示论之间的关系等。在岩泽理论方面介绍了p进ζ函数、岩泽主猜想及与自守形式的关系等。
全书共分10章:第1章整除与带余除法,第2章因子与倍数,第3章*公约数与最小公倍数,第4章平方数与n次方数,第5章素数与合数,第6章进位制,第7章取整函数[x],第8章整数与集合,第9章整点,第10章杂题。本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数论爱好者使用。
本书主要研究无条件安全的认证理论,介绍了作者在这个领域的研究成果。首先分别引入了三方(发方、收方和敌方)及四方(发方、收方、敌方和仲裁方)认证系统的完善认证概念,然后用组合设计的语言刻画了这两类完善认证码的结构,在此基础上找到了完善认证码的构造方法。
本书对组合设计和编码的基本概念、方法和理论作了比较简单的介绍,并介绍了组合设计和编码的联系。全书共分九章。第一章有限关联结构从有限关联结构出发给出了组合设计的基本概念。第二章介绍拉丁方与正交序列的一般理论。第三章介绍几类对称设计。第四章介绍有限射影几何与有限仿射几何。第五章介绍Hadamard矩阵与Hadamard2-
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:第12至14章讨论线性代数、代数和表示论;第15至17章是理想理论;第18至20章讨论赋值域、代数函数及拓扑代数。
本书是范德瓦尔登所著,是代数学中的经典,为后代代数学者所推崇并被大量引用。本书得到冯克勤、胡作玄等人的推荐。