本书是根据普通高等学校教学指导委员会制定的新的本科数学基础课程教学基本要求编写的.全书共9章,内容包括:多项式、行列式、矩阵、线性方程组、线性空间、线性变换、欧几里得空间、二次型及MATLAB实验等.本书注重培养读者的逻辑推理能力,论证严谨而简明,内容由浅入深、条理清晰,充分体现教学的适用性.除第九章外,书中每节配有一
"内容第一部分数理逻辑部分,将选取生活中的逻辑案例和公务员考试题目为引入点,逐步分解数理逻辑中涉及到的命题、谓词、范式及推理理论。一方面可以弘扬优秀的中华传统文化,另一方面可以改变目前教材中的国外案例居多的状况。拓展环节能够对所选案例进行理论推导、Python程序实现并形成最终报告。第二部分集合论,通过学习集合论的经典
本书包括集合与关系、计数、数理逻辑、图论基础、再论图论和代数结构六章内容,介绍离散数学的基础知识。
《算术基础》是德国数学家、哲学家G.弗雷格的经典著作,也是数理逻辑与分析哲学的奠基之作。弗雷格试图从逻辑角度给数下严格的定义,他首先批判地考察了施罗德、密尔、洛克、莱布尼茨、贝克莱等人关于数的观点,并在此基础上提出自己的核心命题:数的陈述包含的是对概念的断言;每个数自身是独立自存的对象,数词表示的是专名;数不是主观的表
本书是为适应“新文科”背景下经管类专业大学数学教学的新要求,推进信息技术、数字经济与课程教材深度融合而编写的线性代数教材。主要内容包括矩阵与行列式、线性方程组、矩阵的特征值和特征向量、二次型、线性空间与线性变换,其中线性空间与线性变换为选学内容。本
本书是依据高等学校线性代数课程教学基本要求,针对非数学类专业本科学生的专业学习与专业发展需要,结合教学实际在第二版的基础上修订而成。本书注重阐明线性代数的基本理论、基本概念和基本方法,理论联系实际,由浅入深,突出重点。全书共分7章,主要内容包括:行列式、矩阵、向量与线性方程组、矩阵的特征值与特征向量、二次型、线性空间与
本书是按照新时代本科教育高质量发展要求,适应应用型人才培养而编写的线性代数教材,书中融入了人工智能、数据处理等领域的线性代数知识和应用。本书突出线性代数的基本概念、基本理论和基本方法,在重要概念引入时尽可能做到简明、自然和浅显。本书主要内容包括行列式、矩阵、n维向量及向量空间、线性方程组、矩阵的特征值与特征向量、二次型
本教材是为高等学校理工类和经济管理类专业编写的基础课教材,主要包括行列式、矩阵、线性方程组、矩阵的相似以及二次型等线性代数课程的基本内容。每章配有基础练习题、历年考研真题和总习题,以适应不同层次学生的需要。书中除了介绍线性代数的基本理论和方法外,还增加了MATLAB应用实例,以提高学生应用软件解决实际问题的能力。
作者本着优化结构体系,降低理论要求,强化思想教育,加强实际应用的原则,以线性代数在本科教育中的功能定位和作用为依据,在引进先进计算工具的基础上强调数学基础理论和思想的学习,适当减少烦琐的计算技能训练,较好地处理了理论教学与实际应用的关系、学科的独立性与相关科学的关系,尽量做到传统而不失其先进性,简明而不失其系统性,扼要