乔治·布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为“思维的定律”,理由是命题代数和思维过程的原则紧密相联。本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书是《线性代数》(乔宝明主编,西安电子科技大学出版社出版)的配套辅导书.全书共有五章,每章包含内容要点、解题方法、典型例题、习题详解、章节测试、能力提升六个部分.这六个部分系统、精练地总结了教材各章的重难点问题,并对教材各章的习题进行了详细解析,以帮助学生更快、更好地掌握教材中的内容,同时增加了一些测试习题、考研真题
本书介绍了矩阵及其相关内容,共有17章,主要介绍了矩阵及其运算、高斯算法及其一些应用、n维向量空间中的线性算子、矩阵的特征多项式与最小多项式、矩阵函数、多项式矩阵的等价变换(初等因子的解析理论)、n维空间中线性算子的结构(初等因子的几何理论)、矩阵方程、U-空间中的线性算子、二次型与埃尔米特型等内容。书中配有相关的例题
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅
本书在全面归纳考研数学三十余年大量真题(包含数学一~数学三)的基础上,进行题型归纳与总结,旨在帮助读者更快地理解和应用线性代数的知识。 本书共分为6章,第1章为行列式,第2章为矩阵,第3章为方程组,第4章为向量组,第5章为相似、特征值,第6章为二次型。全书共49个专题,提供了大量综合性试题的考试题型与解题方法。建议读者
本书共5章:第1章介绍代数系统的基本概念,内容包括集合与映射、群、环、域及线性代数系统等;第2章介绍矩阵代数,内容包括矩阵定义、矩阵的各种运算,如线性运算、乘法、转置、方阵的行列式等,并由此讨论可逆阵的概念及性质;第3章介绍线性方程组的消元法,为后面讲解向量空间的知识奠定基础;第4章基于矩阵、线性方程组等讨论应用广泛的
线性代数对于培养学生抽象思维能力和辩证思维能力起着不可或缺的作用。线性代数的理论是计算技术的基础,同系统工程、优化理论及稳定性理论等有着密切联系,随着计算技术的发展和计算机的普及,线性代数作为理工科的一门基础课程日益受到重视。本书内容主要包括行列式、矩阵及其运算、初等变换与线性方程组、向量组的线性相关性、方阵的对角化、
本书内容讲述:线性代数是大学本科阶段理工科、财经类各专业必修的课程,其研究的对象、涉及到的基本思想与解决问题的方法都不同于高等数学,导致学生学习该课程有一定的难度。基于此,宋浩老师带领多年讲授该课程的老师们共同编写了这本《线性代数讲义》。
线性代数是大学数学的一门重要基础课程,也是自然科学和工程技术各领域中广泛应用的数学工具。本教材根据高等院校线性代数教学大纲要求编写而成的,不仅介绍了线性代数的相关概念、理论、方法等基础知识,还介绍了线性代数在实际生活中的应用.本书共分六章,包括行列式、矩阵、向量组与向量空间、线性方程组、相似矩阵和二次型、线性空间与线性
本书含二十二套章节习题和配套模拟试卷,主要内容包括几何向量及其运算,向量及其运算的坐标计算,平面及其方程,直线及其方程,线性方程组,矩阵的运算,对称矩阵与分块矩阵,行列式的性质和计算,逆矩阵(一),逆矩阵(二),秩与初等变换,方程组解的判断,线性相关与线性无关,极大无关组与秩,线性相关性(补充),向量空间、基和维数,方