本书共分六章,基本内容分为集合论、代数结构、图论和数理逻辑四大部分,全部讲授需要60学时左右。书中各部分之间有一定的联系,但也相互独立,故讲授者可以按照本书编排顺序讲授,也可以根据自己的喜好自行确定讲授顺序。每章均配有难度不等的习题,供学生练习巩固之用。由于学时限制,那些重要的但没有包括在本书中的内容(比如组合学)建议
本书是《有向几何学》系列成果之五.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n+1点集、2n+1多角形(多边形)重心线的有关问题进行深人、系统的研究,得到一系列的有关平面2n+1点集、2n+1多角形(多边形)重
本书是《有向几何学》系列成果之四.在《平面有向几何学》和《有向几何学》系列研究的基础上,创造性地、广泛地综合运用多种有向度量法和有向度量定值法,特别是有向面积法和有向面积定值法,对平面2n点集、2n多角形(多边形)重心线的有关问题进行深入、系统的研究,得到一系列的有关平面2n点集、2n多角形(多边形)重心线的有向度量定
本书侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解。
依照2018年1月颁发的《普通高等学校本科专业类教学质量国家标准》,在近20年的离散数学讲义基础上,精心整理,编撰成本书。在编写过程中,充分考虑了重点高校和普通省属院校等各类学校的学生基础、教学特点和教材改革经验,以增强本书的适用性。 本书分为数理逻辑、集合论、代数系统和图论4篇,内容包括命题逻辑、谓词逻辑、集合、二元
乔治·布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为“思维的定律”,理由是命题代数和思维过程的原则紧密相联。本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书主要介绍了超图匹配的研究背景及意义和当前的研究动态。另外,本书还介绍了几类临界超图以及它们的性质,从两个相邻顶点的最小度和的角度研究了3一致超图匹配的存在性,从两个k-1子集的度和的角度研究了k一致超图匹配的存在性,并得到了一些相关结果。同时本书也给出了几个值得研究的问题,供感兴趣的读者参考。
本书是《线性代数》(乔宝明主编,西安电子科技大学出版社出版)的配套辅导书.全书共有五章,每章包含内容要点、解题方法、典型例题、习题详解、章节测试、能力提升六个部分.这六个部分系统、精练地总结了教材各章的重难点问题,并对教材各章的习题进行了详细解析,以帮助学生更快、更好地掌握教材中的内容,同时增加了一些测试习题、考研真题
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅
本书从模糊集合的基本概念和性质入手,深入讨论了模糊模式识别、模糊关系与模糊映射、模糊逻辑和推理、模糊聚类与分类、模糊决策分析、模糊优化技术,以及模糊系统的建模方法,最后探讨了模糊数学在各领域的应用。模糊数学是一种以隶属度和不确定性为基础,能够描述和处理模糊、不确定和不完全信息的数学工具。通过这本书,读者可以全面理解模糊