信念修正是人工智能的研究分支之一。在哲学、认知心理学和数据库更新等领域中,很早就有对信念修正的讨论和研究。AGM公设在20世纪70年代末被提出,它是任何一个合理的信念修正算子应该满足的最基本条件。本书作者李未院士在20世纪80年代中期提出了R-演算,这是一个满足AGM公设、非单调的并且类似于Gentzen推理系统的信念
本书主要介绍常微分方程的初等积分法、基本理论、定性和稳定性理论的基本内容具体包括常微分方程的初等解法、解的存在唯一性定理、高阶微分方程、线性微分方程组、定性和稳定性理论初步等本书各节配有习题并附参考答案,个别习题还有提示,书末附录介绍了Maple在常微分方程中的应用本书可作为高等学校数学专业常微分方程课程的教学用
许多人在中学数学课堂上学习过“微积分”。《BR》微积分是用来计算“变化”的数学,在计算如位置的变化、速度的变化、股价的变化等多种变化时,微积分发挥着重要作用,甚至可以说微积分几乎是不可或缺的。《BR》本书在第1章中,对微积分的精髓进行了精要讲解。在接下来的第2章中,追溯微积分诞生的时代背景及数学家的思考,探究复杂的微积
复变函数与积分变换是一般高等院校工科专业硕士研究生一年级的必修课程,本书为高等院校和科研院所非数学专业研究生教学而编写.全书共8章,具体包括复变函数与解析函数、复变函数的积分、解析函数的级数表示、共形映射、解析函数在平面场中的应用、傅里叶变换、拉普拉斯变换、梅林变换,以及附录的实数序列的上下极限、快速傅里叶变换等内容.
本书是作者团队结合多年教学实践经验与科学研究成果,在力求通俗易懂、简明扼要的指导思想下编写而成的。本书共11章,内容包含数理逻辑、集合与关系、函数、代数结构、图和树等。本书体系严谨、文字精练、内容充实、例题丰富,配套丰富的教学资源,适合高校教学使用。除此之外,本书综合国内外离散数学的相关新资料,采用双语的形式,从而培养
微积分是理工科高等学校非数学类专业最基础、重要的一门核心课程。许多后继数学课程及物理和各种工程学课程都是在微积分课程的基础上展开的,因此学好这门课程对每一位理工科学生来说都非常重要。本套教材在传授微积分知识的同时,注重培养学生的数学思维、语言逻辑和创新能力,弘扬数学文化,培养科学精神。本套教材分上、下两册。上册内容包括
线性代数在现代科学的各个领域都具有广泛的应用,是高等院校理工、经管等各专业的一门重要的基础课。本书是我们在清华大学出版社出版的《线性代数》(第2版)的配套辅导书,也可以独立使用
本书是全国高等教育自学考试“线性代数(工)”指定教材,本次改版是根据自考办在规划课程时,重新设置了本课程的名称,进行的改版。本书内容的修订,主要根据《线性代数(工)自学考试大纲》,对例题、习题等再进行优化,对知识点的讲解再突出重点,更好地适用于参加自学考试的学生。同时将建设本教材配套的数学资源。数字资源的建设主要对教材
简明线性代数教程
本书围绕具体的优化实际问题案例,集中探讨利用MATLAB、Lingo,Gurobi和Yalmip等软件和工具箱来编写合格的数学模型代码。MATLAB自R2017b增加了问题式优化建模流程,这是MATLAB构造和求解优化模型的里程碑式调整,到本书截稿的R2022b版本,问题式建模流程每次版本更替都有新增功能和变化。鉴于目