“线性代数”是高等院校大多数专业学生必修的一门重要基础理论课.本书围绕教学大纲,在适宜教学以及易学易懂等方面做了探索,并在保持严谨性的同时适当地加入了一些线性代数的应用.本书叙述通俗易懂,语言简单明快,很好地把握了线性代数的深度和广度.全书共分七章:行列式及其应用、矩阵及其运算、n维向量空间、线性方程组、矩阵的特征值及
本书是分数阶系统与高阶逻辑形式化验证的基础理论研究著作。分数阶系统是建立在分数阶微积分方程理论上实际系统的数学模型。分数阶微积分方程是扩展传统微积分学的一种直接方式,即允许微积分方程中对函数的阶次选择分数,而不仅是现有的整数。分数阶微积分不仅为系统科学提供了一个新的数学工具,它的广泛应用也表明了实际系统动态过程本质上是
本书是微积分(第3版)(上、下册)的配套系统课教材,也分上、下册。上册内容包括函数、极限与连续、导数与微积分、微分中值定理与导数应用、不定积分和定积分及其应用。
"为适应新时代应用型本科并兼顾职教本科创新人才培养,北京航空航天大学、南开大学、大连理工大学、天津仁爱学院、吉林建筑科技学院等多所院校的知名教授根据目前应用型本科及职教本科教学现状,对本书进行了修订。本次修订在保持了第二版的特色及内容结构的基础上,对部分内容进行了调整,并针对教学中及实际生活中常出现的一些问题增添了“想
本书共八章,内容包括:函数、函数的极限与连续性、导数与微分、微分中值定理与导数的应用、一元函数积分学、级数、多元函数微积分学、微分方程与差分方程。具体包含函数的表示法、数列的极限等内容。
本书从数学家的角度清晰地提出了基本概念和思想,并在各种特殊类型的代码中加以说明。本书再版版本除了添加了编码增益等内容,还附上了关于编码理论的最新文献,让读者能够进一步拓展知识面。
本书是基于作者多年来为本科生、硕士研究生讲授组合分析方法及应用课程的讲义与作者的研究成果编写而成。全书系统介绍组合数学的存在性和计数两大组合分析领域的主要理论、方法及其应用,共八章,内容包括鸽巢原理及其应用、排列与组合及二项式系数、容斥原理及其应用、生成函数与递归关系、二阶线性齐次递归序列、组合序列及其性质、组合反演公
本书共六章,包括函数极限连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程。
上海大学理学院数学系,成立于1960年,其前身是上海科技大学数学系,由嘉定校区的数学系和延长校区、徐汇校区、嘉定东校区的数学教研室合并而成,本书主编为杨建生。杨建生,基础数学博士,上海大学数学系教授。《微积分强化训练题》(第三版)是2015年上海普通高校优秀本科教材《高等数学(上、下)》(上海大学数学系编,高等教育出版
本书作为高等院校理工科专业基础教材,主要内容包括复变函数基本理论以及复变函数在弹性理论和线弹性断裂力学中的应用。全书共分为8章:前6章主要介绍了复变函数的基本理论,包括复数与复变函数、解析函数、复变函数的积分、级数、留数和共形映射;第7章、第8章分别介绍了复变函数在弹性理论和线弹性断裂力学中的应用;附录中介绍了复变函数