《Cn单位球上的函数理论》(作者鲁丁)是springer数学经典教材系列之一,表述清晰易懂,自然流畅,用很少的实分析、复分析和泛函分析基本知识做铺垫,全面介绍了球上基本原理。既是一本很好的参考书,又是一本高年级教程。
《信息技术和电气工程学科国际知名教材中译本系列:凸优化》从理论、应用和算法三个方面系统地介绍凸优化内容。凸优化在数学规划领域具有非常重要的地位。从应用角度看,现有算法和常规计算能力已足以可靠地求解大规模凸优化问题,一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质
中国科学院数学与系统科学研究院于2011年4月至2011年10月举办了题为“非线性偏微分方程中的分析”的主题研讨班。《非线性偏微分方程分析讲义(第3卷)(精)》由林芳华、张平主编,收集了其中8篇讲义,包括NicolasBurq教授等关于水波问题Cauchy理论的低正则性,Jean-YvesChemin教授关于Navie
《多复变函数论》包含多复变函数研究中分析、层论与复几何这三个最主要方面的主要研究成果与方法。较之国内外相应的多复变函数著作,本书的内容更全面,而且通过阅读本书,读者可以充分了解多复变函数与几何、拓扑、方程和实分析等相关分支的交叉关系。《多复变函数论》的撰写尽可能地适于自学之用,主要读者对象为数学系高年级本科生、研究生与
本书以数学分析、线性代数和常微分方程等本科课程所提供的工具为依据来选择偏微分方程课程的内容。把分部积分、场论、Sturm-Liouville等理论与偏微分方程结合起来讨论以便揭示其作用与意义,对极值原理也作了较仔细的论证。本书内容以微积分理论所能容纳的程度为限,具体内容包括:一阶方程、变分问题、常系数线性方程求解方法、
《索伯列夫空间和插值空间导论》是以作者研究生教程的讲义为蓝本整理扩充而成,全面讲述了索伯列夫空间和插值理论。书中包括42章,每章尽可能多的包括研究生学习所需的材料,不仅是一部研究生学习的讲义材料,也是很多老师学者关心的课题。通过大量的脚注讲述了本教程的形成过程有关老师的趣闻轶事,这使本书不仅是一本很完善的教程,而且也非
老师也偷偷看的科学书:有趣的图形
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
神童妙算