《微积分的历程:从牛顿到勒贝格》介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。《
《普通物理实验》是在自编自用普通物理实验讲义的基础上,经过三年的教学试用和不断修改完善而成的,是曲靖师范学院物理与电子工程学院长期从事实验教学的教师和实验技术人员的教学实践的结晶。书中选择了26个涵盖力学、热学、电磁学和光学内容的基础物理实验项目,每个实验项目包括实验目的、实验仪器、实验原理、仪器介绍、实验内容与步骤、
《泛函分析基础》以简短的篇幅叙述了线性泛函分析的基础理论。《泛函分析基础》共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilben空间的几何学以及线性算子的谱理论.本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入
《21世纪高等院校教材·大学数学教程》分上、下两册。上册内容包括极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、微分方程和差分方程简介、级数中的常数项级数、函数项级数、幂级数和傅里叶级数。在附录里介绍了双曲函数、极坐标和复数的基本概念。下册内容包括空间解析几何、多元函数微分学及其应用、重积分、曲线与曲面积
《21世纪高等院校教材:大学数学教程》分上、下两册。上册内容包括极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、微分方程和差分方程简介、级数中的常数项级数、函数项级数、幂级数和傅里叶级数。在附录里介绍了双曲函数、极坐标和复数的基本概念。下册内容包括空间解析几何、多元函数微分学及其应用、重积分、曲线与曲面积
《微积分基础:引入Mathematica软件求解》以微积分为核心,在高等数学学习中结合使用数学软件,通过参与“演示与实验”帮助学生理解数学中的一些抽象概念和理论,并方便、简捷地用计算机来解复杂的实际运算问题。《微积分基础:引入Mathematica软件求解》引入国外先进的教学模式和教学理念,注重知识的实用性、生动
《试验设计与Design-Expert、SPSS应用》的特点是在介绍基本理论、基本方法的基础上,突出试验设计方法与试验数据处理的实际应用,如使用Design-Expert软件,利用它对相关问题进行试验设计,由其给出的试验设计进行试验,所得的试验数据输入软件内。Design-Expert能够将试验数据自动进行处理,给出统
《数学分析选讲》是作者在长期从事数学分析教学的基础上写成的,也是数学分析基本概念、基本定理及各类M题常用与典型方法的一个总结。书中对数学分析的内容按知识点进行整合,对各个重要知识点进行了系统讲解和辨析,对近些年来一些重点高校的典型考研试题进行了独到的分析和讨论,使得整个数学分析所涉及的知识结构更加清晰。全书共17讲,每
《离散数学教程》打破了传统离散数学教材几大模块分割的编写方式,突出知识的内在联系,强调理论的循序渐进、相互依存,从而更具有可读性和系统性。《离散数学教程》覆盖了集合论、数理逻辑、组合论、数论、图论、抽象代数、可计算性等基础理论部分,还包含了这些理论在粗糙集、模糊集、自动推理、智能搜索、加密技术等领域的应用,并涉及公理化
随着研究生的扩招,招收研究生的数量越来越大.再加上培养方案的改革,出版研究生系列教材已经提到议事日程上来.在20世纪90年代,北京师范大学出版社已经出版了几部基础课教材:《泛函分析》《实分析》《随机过程通论》等,但未系统策划出版系列教材.2005年5月,由北京师范大学数学科学学院李仲来教授和北京师范大学出版社理科编辑部