高等代数是数学专业考研的必考课程,本书是作者在积累了多年为数学专业本科生进行高等代数考研辅导的经验的基础上编写而成的.全书共9章,包括行列式、线性方程组、矩阵、多项式、二次型、线性空间、线性变换、λ-矩阵、欧氏空间等内容.书中对很多高校近年的高等代数考研高频真题进行了分类解析,力求使读者能够举一反三,熟悉考试中经常出现
本书主要面向大学数学、计算机科学与技术专业信息安全方向的高年级本科生、研究生,以及对纠错编码感兴趣的教师和科研人员。全书分为10章。第1章是绪论,介绍了纠错码的研究意义与进展,以及量子纠错码的研究意义与进展。第2和3章分别介绍了有限环上的自对偶循环码和拟循环码的一些结论。第4章介绍了指数为1的循环码的代数结构和极小生成
本书是高等代数课程和解析几何课程的习题训练辅导书。本书包括两个部分:代数部分和几何部分。代数部分包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等内容。几何部分包括几何空间的线性结构和度量结构、空间的平面和直线、常见曲面、坐标变换、平面二次曲线方程的化简及其类型和性质等内容。本书习题难度分
本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由编者近年来的考研强化辅导班笔记改写而成。本书可供考研科目为数学一、数学二、数学三的考生使用。全书分为六章,包括行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量及二次型等内容,书末附有习题参考答案。 本书结构清晰,内容翔实,可作为考研学子的辅导教材。
《离散数学》系统介绍了离散数学的基本概念、基本定理、运算规律及离散数学在计算机科学与技术中的应用。全书共6章,主要内容包括命题逻辑、谓词逻辑、集合及其运算、关系、函数和图论。每章均附有精选习题。本书在内容安排上循序渐进,概念阐述严谨,证明推演详尽,实例说明清楚。《离散数学》立求将理论与应用相结合,适合作为普通高等院校计
本书内容分为数理逻辑、集合论、代数结构、图论等四个主要部分,包含命题逻辑、一阶谓词逻辑、集合、二元关系、函数、代数结构、特殊代数系统、图、特殊图及图的应用、树等10个章节。本书以应用型人才培养为目标,突出离散数学作为计算机及相关本科的专业基础课这一定位,本书可作为计算机科学与技术、软件工程、智能科学与技术、物联网工程、
本书共分四部分,主要介绍了Hadamard行列式问题,Hadamard矩阵问题,Hadamard矩阵的推广应用及其与其他矩阵的联系等内容。具体内容包括:初等方法;Hadamard矩阵;Hadamard矩阵的性质;关于Hadamard矩阵的几个猜想等。
本书主要通过Riemann猜想的历史及进展,中外名家论Riemann函数与Riemann猜想以及Riemann函数面面观三部分来介绍Riemann猜想。Riemann猜想是关于Riemann函数的零点分布的猜想.
本书共六编,包括二进制与p进制、p-adic数与赋值论、中国学者的若干研究成果、代数数论与群论中的P-adic数、p-adic方法的若干习题及解答、Setre的p-adic模形式概览。
本书主要介绍了麦比乌斯反演的相关内容,全书共分八章,内容包括麦比乌斯反演公式、麦比乌斯反演公式的应用、偏序集上的麦比乌斯反演与组合计数、麦比乌斯函数与非线性移位寄存器、密码学与凝聚态物理、反演公式与麦比乌斯函数、表示论中的麦比乌斯反演公式、反演公式的矩阵形式等。在每一章节后,作者都给出了相应的习题及解答,以供读者更好地