分数阶微积分研究的是非整数阶的微分和积分,可实现的阶数灵活且自由度大,所以在图像处理领域的应用逐渐得到关注。本书将通过特定的分数阶微积分定义与图像处理领域的重要工具——傅里叶变换和分数阶傅里叶变换,建立分数阶微积分与图像变换的关系。全书共7章,分别是绪论、图像处理及分数阶微积分基础、分数阶微积分与信号处理的关系、基于分
本书根据教育部高等学校大学数学课程教学指导委员会制定的“经济和管理类本科数学基础课程教学基本要求”,并结合编者长期从事高等数学教学的经验及应用型本科院校学生的基础和特点进行编写的。内容包括,向量代数与空间解析几何、多元函数微分学、二重积分、无穷级数、微分方程与差分方程。书内各节后均配有相应的习题,各章后有相应的综合练习
自1998年PT对称量子力学(非经典量子力学)被提出以来,逐步激发了人们对有关PT对称理论和实验方面的广泛关注.作者自2007年开始研究PT对称相关的问题,本书的主要内容源于作者的部分研究成果.本书主要阐述PT对称理论、方法及其在线性和非线性波方程中的应用,主要针对具有物理意义的不同复值PT对称势,研究非厄米Hamil
本书引进的改进傅里叶级数,是在闭区间上可以一致收敛地逼近任意形式的拟光滑函数的级数。本书给出了:变系数线性常微分方程的通用求解方法(这里变系数可以是连续函数,也可以是间断的函数);对具有各阶奇异点的奇异性方程(正则或非正则)给出了求解的原则;对几种常见的奇异常微分方程给出了详尽的求解过程和计算算例;完满地求解了两个典型
本书共分7章,作者列出了在科学和工程学中的NLPDEs组;介绍了相容性;介绍了微分替换的观点,列举了霍普夫-科尔变换和伯格斯方程的经典例子;介绍了三个特殊的变换:速端曲线变换、勒让德变换和安培变换;阐述了第一积分的相关情况等等。
本书就是一部原版引进的专门讲拓扑方法的数学专著,中文书名或可译为《微分方程与包含的拓扑方法》。本书一共有三位作者,第一位是约翰.R.格雷夫(JohnR.Graef),美国人,田纳西大学查塔努加分校的数学教授,此前曾在密西西比州立大学任教。第二位是约翰尼.亨德森(JohnnyHenderson),美国人贝勒大学杰出的数学
本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了
特征值理论与计算是科学计算的核心内容,在各学科中有广泛应用,建立这些理论与计算及其在其他学科的应用是本书的主要目标。本书主要内容包括矩阵特征值理论以及数值计算,以及特征值计算相关的应用如动力学模式分解和Koopman分析、逆散射变换、量子逆散射变换、张量网络、神经网络量子态和量子算法。
本书分为十一编,介绍了Korteweg-deVries(KdV)方程的历史,KdV方程的解法及KdV方程的近似解、周期解、行波解、孤波解和精确解,同时还介绍了KdV方程的对称与不变性、KdV方程的数值方法和差分算法等内容。
本书是本科生泛函分析教材。全书共六章,着重介绍泛函分析的基本理论,包括度量与范数、算子与泛函、内积空间和Hilbert空间算子、Banach空间中的基本定理、线性算子的谱等内容。教材对一些与现代数学密切相关的问题进行了详细的论述。为克服泛函分析抽象难学的困难,本书给出了大量具体实例,同时还分章节配备了相当数量的习题,启