本书是“十四五”高等教育公共课系列教材之一,内容包括行列式、矩阵、n维向量组、线性方程组和相似矩阵、二次型、线性空间与线性变换。其中部分内容添加“*”号,为选学内容,以适应不同专业选用和分层教学的需要。为便于学生课后练习,书后附有习题与测试题参考答案及提示。本书从实际出发,注重论述基本概念和基本方法,适合作为高等学校理
本书共分3章:行列式、初等变换、特征值与特征向量。主要内容包括:行列式入门;利用行列式的性质求行列式;计算特殊行列式;初等变换入门;矩阵的秩;可逆矩阵;线性方程组;特征值与特征向量入门等。
本书以通俗易懂的语言解释线性代数的基本概念,通过生动的实际应用场景,帮助学生直观地理解线性代数的原理和方法,逐步建立数学思维模式,注重学生逻辑思维和问题解决能力的训练。为了增加可读性与实用性,本书还介绍了矩阵变形演算的练习,同时丰富了人文、经济和管理方面的实际操作案例。
本教材是普通高等教育农业农村部“十四五”规划教材《线性代数》的配套用书,按主教材章节顺序编写,各章内容分为:教学目标与基本要求、基本内容与重要结论、典型方法与范例精讲、自测题、自测题解答、教材习题全解共六部分。本书从线性代数的教学目标、基本要求、基本内容、重要结论、典型方法和范例精讲等方面对各章内容做了具体分析指导。每
《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
魔方是一项广受欢迎的益智游戏,但很多人往往因为不得其法而打退堂鼓,书中介绍了可以帮助读者快速入门并进阶的方法,致力于帮助读者玩通魔方。全书分为6章,前4章主要介绍了还原三阶魔方的基础手法,以及还原三阶魔方的底层、中层和顶层的具体步骤,第5章和第6章则分别介绍了还原二阶和四阶魔方的详细步骤。采用分步骤、分层次的讲解形式介
本书带领读者循序渐进地学习还原三阶魔方的操作方法。本书分为5章,分别是三阶魔方的基础知识及还原手法、三阶魔方公式还原基础、还原三阶魔方的底层、还原三阶魔方的中层和还原三阶魔方的顶层。还原三阶魔方的整个过程可以不记复杂公式,只用左右手手法,如果想要提高还原速度,可以在还原顶层时将手法和公式相结合。
"本书的目的是为将Lie代数和Lie群应用于解决科学和工程中出现的问题的研究人员和实践者提供工具。作者解决了用一种更合适的基来表示在任意基上得到的Lie代数的问题,在这种基中Lie代数的所有基本特征都是直接可见的。这包括实现直和分解、识别根和Levi分解、计算零根和Casimir不变量。每种算法都给出了实例。对于低维L
"组合数学中存在着大量精巧且富有趣味性的问题,本书由此出发,逐步引出组合数学中的常用技巧和重要深刻的理论思想,旨在围绕组合数学中的基础研究对象和基本研究方法,着重阐述组合数学思想和方法的应用。本书还特别加入了重要理论方法产生的历史背景及相关人物介绍。本书内容编写力求通俗流畅,深入浅出,生动灵活,主要内容包括基本计数问题
"Lie超代数是Lie代数的自然推广,在几何、数论、规范场论和弦理论中都有应用。本书发展了Lie超代数的理论、它们的包络代数和它们的表示。本书的前五章介绍了Lie超代数的基本性质,包括所有经典单Lie超代数的显式构造;研究和描述了在这里更为微妙的Borel子代数;引入了逆步Lie超代数,使得对多个结果可以采用统一方法处