本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了
特征值理论与计算是科学计算的核心内容,在各学科中有广泛应用,建立这些理论与计算及其在其他学科的应用是本书的主要目标。本书主要内容包括矩阵特征值理论以及数值计算,以及特征值计算相关的应用如动力学模式分解和Koopman分析、逆散射变换、量子逆散射变换、张量网络、神经网络量子态和量子算法。
本书分为十一编,介绍了Korteweg-deVries(KdV)方程的历史,KdV方程的解法及KdV方程的近似解、周期解、行波解、孤波解和精确解,同时还介绍了KdV方程的对称与不变性、KdV方程的数值方法和差分算法等内容。
本书是本科生泛函分析教材。全书共六章,着重介绍泛函分析的基本理论,包括度量与范数、算子与泛函、内积空间和Hilbert空间算子、Banach空间中的基本定理、线性算子的谱等内容。教材对一些与现代数学密切相关的问题进行了详细的论述。为克服泛函分析抽象难学的困难,本书给出了大量具体实例,同时还分章节配备了相当数量的习题,启
介绍现代遍历理论的基本内容以及它在其它数学分支中的应用。本书基本内容包括:保测系统的概念和基本性质,Poincare回复定理;vonNeumann和Birkhoff遍历定理;拓扑动力系统基本概念和结论;熵理论的初步知识;Furstenberg交的初步知识;遍历论在Ramsey型组合数论问题中的应用,以及多重遍历回复问题
求非线性问题的解析近似解最著名的方法是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。本书分为上下两卷
本书详细介绍了线性泛函分析的基础知识,全书共分6章:距离空间、赋范空间、内积空间、有界线性算子、共轭算子和共轭空间以及谱理论的初步。本书力求文字流畅,论证严谨,对定义、定理的背景与意义交代得比较清晰,对新旧知识采用了类比、归纳等方法,把有限维空间的数学方法推广到无穷维空间,同时介绍了泛函分析与其他数学分支之间的内在联系
"本书介绍常微分方程的基础知识,包括基本理论、方法和在工程实际的若干应用。全书共分六章28节,包括绪论、初等积分法、线性方程、常系数线性方程、一般理论和定性理论初步等内容,涉及常微分方程模型、矩阵指数函数方法、微分不等式与比较定理、微分方程数值解、动力系统概念、周期轨道与Poincar6映射、平面Hamilton系统等
非线性科学被深入研究并广泛应用到了各个自然科学领域中,在研究过程中人们遇到各种各样的非线性偏微分方程,很多意义重大的自然科学和工程技术问题、重要的物理和力学等学科的数学模型都可归结为非线性偏微分方程,因而研究非线性偏微分方程具有重大意义。方程的精确解可以很好的描述各种物理现象,对实际问题具有重要的理论意义和应用价值。人
本书内容包括分数阶导数、分数阶广义Hamilton系统、分数阶广义Hamilton系统梯度、分数阶广义Hamilton系统的代数结构与Poisson积分、分数阶广义Hamilton系统的变分方程与积分不变量、有界分块算子的共轭算子、无界分块算子的共轭算子、无界Hamilton算子的辛自伴性、有界分块算子的本质谱和Wey