本书主要工作是发展已有的H1-Galerkin混合有限元方法、发展新的改进H1-Galerkin混合有限元格式、提出一类新的混合有限元算法和新的两层网格混合有限元算法通过数值求解一些非线性Caputo型或Riemann-Liouville型时间分数阶偏微分方程给出算法的数值理论分析及计算结果,这些微分方程包括非线性分数
本书收录了高等学校学生学习和科研中用到的积分与和式,涉及常用的初等函数与特殊函数,共8000余个,内容包括:变上限积分、特殊函数的定积分、涉及周期函数的某些无穷积分、Frullani积分、有限和无穷级数、球函数的Christoffel型和式、超几何函数的Christoffel型和式、柱函数的Christoffel型和式
本书属于实变函数理论方面的著作,基于对集合及其相关知识内容的梳理阐读,着重对欧氏空间中的点集、测度理论的核心内容、可测函数及其结构、积分理论的重点内容、微分与不定积分进行了深入的探讨,最后以发展的眼光探索了抽象测度与抽象积分。本书涵盖全面,内容紧凑,环环相扣,具有新颖、系统、全面、科学和实用的特点,既有理论深度,又有示
本书首先将介绍Sato理论的核心内容KP、mKP与Toda及其相关可积方程族的相关知识,包括Lax方程、双线性方程、tau函数、附加对称、平方本征函数对称以及达布变换等问题。然后给出如何利用无限维李代数的最高权表示来构造这些可积方程族及其约化,并研究其相应的性质。
本书是有关数学分析的理论专著,系统地总结了数学分析这门课程的基本概念、基本理论,并通过典型例题介绍数学分析解题的基本技巧和方法,全书按数学分析这门课程的内容共分为七个部分。每章、每节包括基本概念、基本理论、基本方法、典型例题等部分,这将有助于加深读者对数学分析内容的理解。本书还运用了大部分习题演示,使读者在回顾基本知识
"全书共6章。第一章介绍微积分的基本概念,从函数差商估值问题出发,直接引入导数和函数的一致连续性,并阐述了导数作为切线的几何意义;通过差商上下界的估计引入导数的又一个等价定义,推出了“导数正则函数增”等导数基本性质;利用面积的基本性质引入定积分,证明了微积分基本定理,且用于引入自然对数和指数函数并导出其基本性质。第二章
本书主要内容包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分、无穷级数、多元函数微积分、微分方程与差分方程等。注重数学知识与经济管理学的有机结合,强调微积分在经济管理中的应用。对概念的引入,注重与实际背景结合,特别通过数学模型的引入为学习微积分提供感性基础,使学生在学习过程中,学会用所学数学知识建立模型,
书为高等院校《微积分》课程的同步辅导及学期复习用书,分为上、下两册。全书体例清晰,内容全面,重点突出,对知识难点和重点进行了详细梳理,并根据考点编写了经典习题,以便读者进行有针对性的练习。读者通过本书边学边练,可以更好地理解教材内容,掌握知识点,进而顺利通过学期课程考试。 本书适用于高等院校学生基础学习阶段和备考硕士研
本书旨在巩固数学分析基础知识,补充数学分析中的一些重要方法,提高分析数学问题的思维能力和灵活运用多种知识解决问题的能力。基本框架为:对数学分析的一些重要知识点进行回顾和梳理;介绍一些重要的方法,特别是阶的估计的方法和思想;通过一些考研、竞赛试题等进行解题思路分析,对方法进行应用和强化,注重方法上的分析和讲解。内容包括极
本书总结了近年来作者在常微分方程边值问题和定性理论方面的部分研究成果,共九章。第1-6章利用Leray-Schauder度、迭合度理论、锥上不动点理论、上下解方法、**值原理和单调迭代技巧研究了非线性常微分方程、时标动力方程非局部边值问题的可解性、正解的存在性和多解性以及解的收敛性。第7-9章主要介绍种群动力系统中离散