"扩展图是理论计算机科学、几何群论、概率论和数论中的重要工具。而用于严格建立图的扩展性质的技术来自表示论、代数几何和算术组合学等数学的不同领域。围绕后一主题,本书着重讨论了Lie型有限群上的Cayley图的重要情形,发展了诸如Kazhdan性质(T)、拟随机性、乘积估计、从子簇中逃逸以及Balog-Szemerédi-
"本书简明介绍了20世纪数学的六个精选领域,这些领域提供的许多现代数学工具被应用于计算机科学、工程和其他领域的当代研究。这六个领域包括测度论、高维几何、傅里叶分析、群的表示、多元多项式和拓扑。对每个领域,作者都介绍了基本概念、示例和重要结果。本书清晰易懂,强调直观理解,并包括精心挑选的练习。在理论计算机科学和离散数学中
本书以组合数学中的存在问题和计数问题为主线展现理论之美,从满足一定条件的排列组合的存在性入手,介绍计数方法和计数工具,将组合数学运用到与生活密切相关的网络安全实例中,展现其应用之美。全书分为7章,介绍了排列组合概念与方法、特殊计数、母函数原理与应用、递推关系和容斥原理计数方法,以及鸽笼原理和Polya计数定理。本书将合
"本书共分五章。第一章介绍有理数域的p进赋值,给出衡量有理数大小和距离的各种不同尺度。第二章讲述p进数域,这是有理数域对p进赋值的完备化域。介绍了在p进数域中解代数方程和多项式分解的“新奇”结果和p进分析的基本工具:亨泽尔引理和牛顿折线。第三章介绍用p进分析工具研究数论问题的一个精彩例子,即研究多元二次方程的有理数解的
数论是一门研究整数的历史悠久的学科,对数学思维的培养与训练有特殊的作用。初等数论是一门重要的基础课,本书将初等数论的核心重点知识前移,用浅显易懂的方式呈现;在逻辑与思维上,尽量由浅入深;重点介绍通识方法与技巧,淡化特殊技巧,注重思想方法的学习。《BR》全书分为六章,内容包括整除与同余、二次剩余与原根、不定方程、素数分布
本书是《矩阵半张量积讲义》的第四卷。内容包括两个部分:①一般有限集合上的动态系统的建模与控制,主要介绍有限集(包括有限环与有限格)上的动态系统。②跨维数欧氏空间的拓扑结构、等价性与商空间、跨维数动态系统及跨维半群系统的建模与控制。矩阵半张量积为这两类系统的研究提供了有效的工具。本书所需要的预备知识仅为工科大学本科的数学
《矩阵之美·基础篇》从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述
"本书是编者在多年的实际教学经验的基础上,根据最新的线性代数课程教学基本要求编写而成。本书结构严谨,内容丰富,阐述深入浅出,层次清晰,有大量的实例应用。全书共分为六章,内容包括:矩阵、线性方程组、线性空间与线性变换、行列式、特征值与特征向量、二次型与正定矩阵。在上一版的基础上,本次修订调整了部分章节内容,并新增了100
本书结合高职教育的特点和学生的基础状况,以培养高素质复合型、创新型技术技能人才为目标,选择并整合教学内容,融入大量的案例,辅助计算机软件计算,创新开发了实践任务书,使学生对数学的基本方法和思维方式有一个清晰的认识,为学生将来学习专业课程,自如运用高等数学的知识,分析和解决实际问题打下基础.本书作为高职院校公共基础课程“
本书对高等代数的典型问题及实例进行分析研究,主要内容包括行列式、矩阵、向量组与线性方程组、线性空间与线性变换、方阵的特征值与相似对角化、二次型、欧氏空间等。每章最后配以典型例题,其中一些例题是研究生入学试题,有一定的难度与深度,具有典型性与广泛性。