本书主要探讨和分析了复空间中的双全纯映照与多全纯函数研究与应用。作者结合多年的研究,分6章呈现本书,包括介绍相关的研究背景、研究现状等;阐述双全纯映照的新子族及其性质,包括a阶k圆锥星形映照的定义、系数估计等;介绍多复变数空间中的Roper-Suffridge算子、多复变数空间中的k全纯函数;阐述k全纯函数的定义及其简
本书分为上、下两册。上册分两篇,第一篇为解析几何,内容包括行列式及线性方程组,平面上的直角坐标、曲线及其方程,直线与二元一次方程,圆锥曲线与二元二次方程,极坐标,参数方程,空间直角坐标与矢量代数,曲面方程与曲线方程,空间的平面与直线,二次曲面。第二篇为数学分析,内容包括函数及其图形,数列的极限及函数的极限,函数的连续性
傅里叶级数理论经历了近两百年的发展后已经成为现代数学的核心研究领域之一。一方面,它与偏微分方程论、复变函数论、概率论、代数及拓扑等许多数学分支都有密切关系。另一方面,它是工程技术、经典物理及量子力学等学科中的重要工具,它在热学、光学、电磁学、医学、空气动力学、仿生学、生物学等领域都有广泛的应用。傅里叶级数理论的产生是数
德国数学家RobertFricke(1861-1930年)以其对椭圆函数和模形式的研究而闻名。他与著名数学家FelixKlein合作,共同推动了该领域的发展。他最著名的著作之一就是三卷本《椭圆函数及其应用》,被广泛认为是椭圆函数领域的经典之作。他的著作不仅在当时引起了极大的关注,而且至今仍然是该领域的重要参考资料。本书
本书共4套试卷,针对考数学(三)的考生,参照考研数学真题编写,力求符合命题规律和命题风格。在书稿编排上,试卷每题留白,供考生自测。试卷答案及解析提供解题思路,给出详细答题步骤,分析题目特点,让考生能够举一反三。考生可以通过做题、听讲解课,熟悉考试题型,掌握学习方法、形成数学思维。本书试题难度稍高于市面上的同类产品,读者
本书用读者喜闻乐见的童话故事形式,将抽象、枯燥的数学知识,讲得深入浅出,读起来轻松自如。每一个数学故事都让读者不仅要推理,还要磨练他们的计算技能,同时故事具有很强的娱乐性,让读者在愉悦中接触数学。除了这些故事,书中还介绍了某些数学概念,以及它们的历史。
本书是与《高等数学》同济大学数学科学学院编相配套的同步习题册,根据应用型本科院校的实际情况,结合理工类专业“高等数学”课程的教学及考试大纲要求,为配合教学需要,方便学生课后巩固基本概念和掌握基本解题方法为主要目的而编写的配套练习册。主要包括微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面
离散数学是计算机专业课程的理论基础,这些课程涵盖从算法和自动机理论到组合学和图论。本书结构严谨,涵盖计算机科学专业的学生必须学习的离散数学基础,包括离散数学的基本概念、逻辑、有向图和无向图、自动机和正则语言、阶的表示法和计数问题、离散概率,以及模运算和公钥密码学的内容。本书通过问题讨论对离散数学的分析证明方法进行阐述,
本书介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 本书旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,本书在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。本书的第5章不是本科生必须学习的内容,仅
本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由JacquesTits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学