本书专著所涉及的,是"半群字的代数组合学"的如下几个课题:"正则,r-正则语言","析取,r-析取语言","若干代数码"以及"正则语言和析取语言的其它广义"等。
本书主要介绍利用三个函数(完整二次函数、负高次幂函数、时间累计函数)求解现实曲线(数据)相应函数的方法,即解决现实函数的建立问题。前三章分别讨论三个函数的基本性质,为函数求解及函数使用提供基础性依据。后三章分别介绍现实中可能的三类函数,即理论函数、近似函数、经验函数的求解方法。每章均分别以充实的例子演示各类函数的具体求
本教材以高职院校学生为对象,讲解Matlab基础知识,同时以数学模型为载体,将Matlab融入其中,一方面引导学生掌握基本的数学模型,另一方面培养学生科学计算的能力。该教材编写上旨在引导学生学会利用计算机进行复杂的数学计算、画图,从而提高学生学习和使用数学解决实际问题的能力,实现各学科相互融合学以致用的培养方向。教材的
本书依据全国硕士研究生招生考试的要求,针对线性代数课程的核心内容进行了梳理与分析.每章均包括大纲要求、重点与难点、内容解析,以及题型归纳与解题指导等,并在章末附有基础训练与综合练习两套题目.为帮助学生更好地掌握线性代数处理问题的思想方法、把握考试热点与方向,并使之更好地把握课程的知识体系,在内容解析与学习指导中以注释等
本书以矩阵的理论和运算为主线,把行列式看作矩阵的一个数值特性,突出矩阵的三个数值特性(行列式、秩、特征值)在线性代数中的作用;将向量组、线性方程组、二次型及线性变换与矩阵建立联系,重点对矩阵进行研究,然后用矩阵理论来解决相关问题。本书将初等变换作为贯穿全书的主要计算工具。行列式的计算、矩阵的求逆、矩阵的秩的计算、求向量
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值、数值线性代数和标准型等.为帮助读者巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题. 本书叙述简洁,通俗易懂,理论与应用相结合,
线性代数是大学数学教育中必修的一门重要基础课程.编者依据最新的本科数学基础课程的教学要求,将多年的教学经验有机地融入本书的编写中,深入浅出,简明易懂.全书共6章,包括行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换.各章均配有适量的习题,书末附有习题答案,供读者参考.本
本书按照一般微积分学教程的方式介绍微积分问题的求解,首先介绍函数与序列的描述与图形绘制,然后介绍极限问题的求解、导数与微分问题的求解以及积分问题的求解,并介绍函数的逼近与级数求和等方面的内容,还介绍数值导数与数值积分方面的内容,并给出积分变换、分数阶微积分等的入门介绍。本书可作为一般读者学习微积分学的辅助教材,从另一个
"本书分上、下两册,下册包括多元函数的极限、多元函数的微分、含参变量的积分与反常积分、重积分、曲线积分、曲面积分、傅里叶分析初步等内容。本书内容丰富、推理严谨,重视数学各分支之间的联系,并通过一些延拓性的内容和习题让读者了解课程知识在数学中的应用,同时特别注重阶的估计以及渐近性态的研究和应用。书中大部分习题附有较为详细
这本易于理解的教科书/参考书从算法的角度简要介绍了数学分析,特别着重于分析的应用和数学建模的各个方面。不仅描述了数学理论以及数值分析的基本概念和方法,还包含大量使用MATLAB、Python、Maple和Javaapplet的计算机实验。本版进行了大量更新和扩展,提供更多的编程练习。