本书是两册泛函分析教材中的下册,作为数学专业研究生公共基础课教材,与本书上册共同构成完整的泛函分析教学体系。本书延续了上册的编写理念,注重理论来源与背景的阐述,深入探讨泛函分析与数学物理、偏微分方程及随机过程等领域的密切联系。全书共分四章:Banach代数、无界算子、算子半群、无穷维空间上的测度论。本书的主要特点是侧重
本书是新时代高职数学系列教材之一,是骈俊生等主编的“十四五”职业教育国家规划教材《高等数学(上下册)》(第三版)(第二版曾获首届全国教材建设奖全国优秀教材二等奖)的配套辅导教程。本书主要包括函数的极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、向量代数与空间解析几何、多元函数微分学、多元函数积
本书是海外优秀数学类教材系列丛书之一,从培生教育集团引进。本书向学生介绍各种证明方法、分析证明过程,以帮助学生独立撰写正确且清晰的证明过程。书中先介绍逻辑基础,再引入各种常用的证明方法,如直接证法、反证法、数学归纳法等,然后详细分析数学各分支(数论、组合学、数学分析、群论、高等代数等)中的典型证明过程。各章的练习因其精
"本书为培生现代经典系列之一。书中介绍了线性代数的基本理论,充分兼顾抽象理论与实际计算;不仅讲授如何阅读证明过程,还讲授如何写出证明过程。本书的特色有1.精心设计教材内容,使学生对线性代数的理解从具体实例逐渐过度到抽象理论;2.提供大量的各种层次的实际应用,使来自不同专业的学生都有收获;3.较早介绍矩阵变换在几何中的应
本书内容包括极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、微分方程。
全书共8章,分别介绍数学与数学思想方法、古代数学成就及其思想方法、近代数学成就及其思想方法、现代数学基础理论及其思想方法、数学发现与数学解题的思想方法、数学证明的思想方法、数学应用的思想方法、数学研究的思想方法。
"本书提供数学分析的基础内容,强调推理的逻辑性和论证的结构性,帮助学生的学习从计算转向证明。书中包含大量例题和练习以及各种图形,使学生更容易理解教材内容,且便于教师授课。本书的特色有1.正文含250余道判断题,与教材内容紧密联系,可供课堂讨论。2.正文含100余道应用题,供学生应用所学内容。各节末提供应用题的答案,便于
数学史见证了人类从对数量和形状的懵懂认知,到构建起精妙绝伦的数学理论体系的历程。将数学史融入数学教学,是为了赋予数学以生命和灵魂,让学生明白,数学并非枯燥的数字和字母等的堆砌,而是解决实际问题的有力工具。那么,全球数学史教学的情况如何?作为教师,我们应该如何将数学史有效地融入日常的教学中?本书从理论和实践两方面入手,深
本书内容主要包括极限、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学及级数和反常积分。对较基础的知识点加以全面而简洁地罗列与梳理,对较常用且重要的结论加以辨析与分类,在系统总结数学分析的基本题型及其解题技巧的前提下,将重点放在解题思路的挖掘与提炼上,力求通过一些具有综合性、典型性、代表性的考研真题来最大
本书由考研数学辅导名师张宇领衔编写,是一本针对数学考研学生群体的图书。本书凝聚作者近二十年得命题研究与教学经验,专为考研强化阶段量身打造。该书突破传统教材编排模式,以"考点深挖+题型突破+思维开发"三维体系重构知识网络,便于读者学习和巩固知识,同时突出微积分思想在综合题中的应用,书中每讲设置「名师点睛」手写批注,直击高