《Hilbert型不等式的理论与应用.上册》利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式最佳常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的最
本书是《现代几何学——方法和应用》三卷本的第三卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
本书是《现代几何学——方法和应用》三卷本的第一卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
本书是《现代几何学——方法和应用》三卷本的第二卷。这是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(第一卷),微分流形的拓扑和几何(第二
《离散与计算几何手册——第三版(英文套装上中下)》涵盖了离散和计算几何两个领域的广泛主题,还有很多应用领域中的主题,具体包括几何数据结构、多胞腔和多面体、凸包和三角剖分算法、填装和覆盖、沃罗诺伊图式、组合几何问题、计算凸性、最短路径和网络、计算实代数几何、几何排列及其复杂性、几何重构问题、随机化和去随机化技术、射线射击
本书是美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作。
本书主要内容包括复数与复变函数、解析函数、复变函数的积分、数项级数与幂级数、洛朗展式与孤立奇点、留数理论及其应用、共形映射、傅里叶变换与拉普拉斯变换等。本书借助犕犃犜犔犃犅等软件将复变函数的概念可视化,同时附有对复变函数论的发展具有奠基性贡献的数学名人简介。本书选取的例题比较丰富,由浅入深、易学易教,并适当增加了和数学
本习题集是微积分课程的配套用书,主要分为三部分:作业题、历年期中及期末考试题、模拟题。习题集紧扣教学大纲的要求,作业以课本知识点对应的题型顺序编排,期中及期末试题、模拟题成套汇编。作业题的编写注重基础知识的巩固及基本能力的培养,为了练习基础知识的灵活应用,在每一章最后一节配以相应的综合题。期中及期末考试题的汇编给出了试
本书为“小学教育专业”系列丛书之一。本书主要讲述“微积分”的核心思想、主要内容和广泛应用,包括“极限与连续函数”“一元微分学”“一元积分学”“无穷级数”等基本内容。全书精选“微积分”的核心内容,注重与中学的衔接,注重用微积分的观点解析小学数学的疑难问题。并且为便于教与学的开展,本书配套了丰富的教学资源。
本书为数学分析的学习指导书,是丁彦恒、刘笑颖、吴刚编写的《数学分析讲义》第一、二、三卷的配套用书。主要内容除了经典的一元微积分、多元微积分、级数理论与含参积分之外,还包括拓扑空间的映射、流形及微分形式、流形上微分形式的积分、向量分析与场论、线性赋范空间中的微分学和傅里叶变换等。为了便于读者复习与自查,每一章(第16章除