"本书是普通高等教育“十五”国家级规划教材。全书共分为六章,各章内容分别为:初等积分法,线性方程,常系数线性方程,一般理论,定性理论,一阶偏微分方程。在各章节之后都配备了一定数量的习题。本次修订增加了传染病模型、索洛经济增长模型和RLC电路系统,周期系数线性方程组的弗洛凯理论,格林函数和特征值问题,以及首次积分的一些内
《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书
本书全面系统地介绍了三类典型偏微分方程——波动方程、热传导方程和稳定场方程求解的有限单元法。全书共分9章:第1章导出典型偏微分方程与定解条件:第2~3章介绍有限单元法的基础知识;第4~6章介绍有限单元法求解稳定场方程、热传导方程和波动方程:第7~9章讨论有限单元法在地球物理正演中的应用,书中的实例均经过验证。本书的取材
本书内容包括以下七个部分:度量空间、赋范线性空间与巴拿赫空间、有界线性算子和连续线性泛函、内积空间与希尔伯特(Hilbert)空间、巴拿赫空间中的基本定理、线性算子的谱理论、Moran测度空间上傅里叶基的存在性。本书既可作为开设泛函分析必修课或选修课的教材,又可作为报考研究生学生的学习指导书,同时也可作为教师的教学参考
本书注重常微分方程理论方法的同时,也注重常微分方程的工程实际应用。旨在提高学生发现问题和解决问题的能力,通过理论和实践的反复循环,实现螺旋式上升。本书共七章。第一章简要介绍了工程问题的常微分方程建模,微分方程和动力系统的基本概念。第二章阐述了常微分方程的初等积分法,包括一些经典的一阶微分方程和特殊的高阶微分方程的解法。
本书基于动力系统的思想,首先简要介绍常微方程一些基本理论和方法,为后面学习动力系统理论做铺垫;然后介绍了线性系统、非线性现象等动力系统的基本理论及应用,把常微分方程理论与动力系统的知识有机地融为一体。主要内容有:微分方程的基础概念、常微分方程与动力的基本定理、一阶常微分方程、线性系统实践理论、非线性实践理论及微分动力系
本书基于高阶约束流、Hamilton结构及Sato理论提出了构造孤立子系统的Rosochatius形变、Kupershmidt形变、带源形变以及扩展的高维可积系统的一般方法,并以光纤通信及流体力学中的重要模型,如超短脉冲方程、Hirota-方程、Camassa-Holm型方程及q-形变的KP方程等为例详细阐述了我们提出
本书根据编者多年来教学实践修订而成,大体保持第三版取材的范围、结构和深度。全书共分七章。第一、二、三章分别介绍波动方程、热传导方程与调和方程的基本定解问题的适定性、求解方法及解的性质。在此基础上,第四、五、六、七章分别介绍二阶线性偏微分方程的分类与总结、一阶偏微分方程组、广义解与广义解、偏微分方程的数值解等。在部分章节
本书是专门为幂零李群上的非交换调和分析方向的研究生和青年教师编写的全英文学术专著,主要介绍从事一般二步幂零李群相关工作所需的基础知识、概念和原理,内容聚焦于一般二步幂零李群的几何分析、不可约酉表示的完整分类、傅里叶分析的相关性质、二阶次椭圆算子以及热核的刻画等。
"本书是入门变分法的基础读本,以介绍应用实例与基本概念、基本思想、基本方法为主,力求通俗易懂、图文并茂、有趣实用。具备微积分的基本知识就可以读懂全书。共分四章,第一章介绍变分法的经典案例、基本概念和现代应用,第二章和第三章分别讲授一元函数和多元函数变分法的基本理论和典型方法,第四章给出变分法的近似计算方法,每章后均配有