这本以问题为导向的生动的教科书,旨在指导读者掌握最基本的数学不等式及其应用。作者从柯西-施瓦茨不等式讲起,向读者展示一系列与不等式有关的引人入胜的问题,并以乔治?波利亚的风格来指导读者求解它们,在讲授基本概念的同时,提升解决问题的技巧。这些问题的形式优美,内容出人意料。通过研究它们,读者可以系统学习如下的内容:平方的几
本书系统阐述了波动方程参数反演的理论方法与数值计算方法,内容包括奇异值分解方法、不适定问题的正则化方法、全波形反演的数值优化方法、时间域与频率域声波方程和弹性波动方程的全波形反演。全书理论方法与科学计算并重,不但有严谨的理论推导和算法描述,还有详细的数值算例应用及丰富的图形结果。
数学物理方程是来源于物理、力学等自然科学及工程技术领域的偏微分方程。本书首先介绍了典型的数学物理模型的建立及二阶线性偏微分方程的分类与化简,然后重点介绍了分离变量法、特殊函数(贝塞尔函数)法、行波法、积分变换法和格林函数法等应用广泛的数学物理方程经典的求解方法,最后简要介绍了某些求解非线性数学物理方程的方法,如Adom
本书共4章。第1章为度量空间,讲解度量空间的拓扑结构、度量空间中集合的性质、完备的度量空间。第2章为赋范线性空间,包括赋范线性空间的结构、有界线性算子与泛函、泛函延拓定理、有限维赋范线性空间。第3章为Hilbert空间理论,首先讲解内积空间的构造和标准正交基,然后是Hilbert空间的主要定理,最后是Hilbert空间
本书由线性泛函分析初步、非线性算子微积分、算子半群基础、拓扑度、不动点理论及其在微分方程中的应用和算子半群理论在微分方程中的应用等六部分组成,为研究线性和非线性问题提供基本的数学工具和方法。
本书共分7章(不含绪论)。第1章主要介绍本书所需要的集合论、数学分析、高等代数和近世代数等方面的基本知识。第2章主要介绍与本书相关的点集拓扑知识,重点介绍连续映射、开集、闭集以及紧性。第3章主要介绍可数集、可测集和Lebesgue积分等与本书相关的实变函数知识。第4章主要介绍距离空间的定义、常见的距离空间、距离空间的完
本书主要研究无穷维希尔伯特空间框架下的分裂可行性问题。本书以非扩张映射、单调映射、凸分析等非线性泛函分析理论为主要研究工具,系统介绍了分裂可行性问题解的存在性及其逼近方法的**研究结果,其主要内容由作者长期在该领域的研究成果积累而成。
模糊拓扑学是以模糊集为基本构件在分明拓扑学的基础上发展起来的,因此,它既具有以往拓扑学的抽象与深刻等显著特点,更兼有模糊集突出的层次结梅特色.本书以层次闭集为基本工具,对模糊拓扑学理论作了系统论述.本书主要内容包括预备知识、层次闭集与层次连续性、层次拓扑空间、层次闭包空间、层次连通性、层次分离性、紧性、层次仿紧性等内容
本书是在本社出版化学、生物学、地理学、心理学、环境工程、材料工程、土木工程、交通工程及经济类、管理类各专业高等数学教材之后,继续为电子、计算机、物理学等专业学习高等数学课程编写的教材,高等数学分上下册出版,其主要内容有:极限与连续,导数、微分及其应用,积分及其应用,多元函数微积分,无穷级数,微分方程。本书为高等数学(下
本书是作者综合多年考研辅导经验总结而成。作者通过对数学考试真题的研究分析和对国内外数学竞赛题的研究,发现考研数学题目中有大量真题和各种考试的竞赛题较为相似,可以为考研提供借鉴。本书作者将各类竞赛题目分类,选出考点与考研数学考点重合的题,在分析这些题的出题点、难度等因素后,进一步精选出可以作为压轴练习的题,帮助读者直接接