本书共有五章,内容包括集合及其运算,关系·映射,基数理论,序型理论,策梅罗与弗伦克尔的公理系统。
本书共包含26章,给出了120个代数问题及其详细的解答,还给出了20个附加的奖励问题及其解答.本书大部分题目给出了多个解法,进一步加强了对本书的阐述.前4章是基础,为了帮助读者熟悉和掌握代数的相关概念,因此讨论了这些概念的实际用途,并且利用本书前面的概念重新探讨了多项式对于代数的意义,并进一步扩展了更复杂的应用. 本书
本书为《代数学教程》第五卷,主要讨论我们熟悉的那些多项式:一般域上的多项式、有理数域上的多项式、实数域上的多项式、复数域上的多项式以及多个未知量的多项式等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一类多项式的构造及其性质,用代数观点来叙述全部理论.本书适合高等院校理工科师生及数学爱好者阅读.
本书共6章,介绍了方程式解成根式的问题·低次代数方程式的根式解法、数域上的多项式及其性质、用根的置换解代数方程·群.论四次以上方程式不能解成根式、以群之观点论代数方程式的解法以及抽象的观点·伽罗瓦理论的相关知识.本书适合高等学校数学相关专业师生及数学爱好者阅读参考.
本书内容包括线性方程组的消元解法、矩阵代数、行列式、n维向量与线性方程组的一般解法、整数与多项式、二次型、线性空间、线性变换、矩阵的相似对角形、λ矩阵、欧几里得空间等。本书是在总结我们多年高等代数教学实践的基础上,根据“教材要现代化”的要求并吸取其他有关高等代数教材的优点编写而成的。
"本书依据非数学类专业线性代数课程的教学基本要求和教学大纲,并参照近年来线性代数课程及教材建设的经验和成果编写完成。在概念的引入以及方法的应用上注重“追本溯源、探新求实”,培养学生的创新思维和实践能力。线上资源主要包括应用案例、章节总结、习题讲解等微课视频,以及拓展阅读、章节测试等。全书结构主次分明,语言表述通俗易懂,
本书介绍了实际工作所需要的行列式、矩阵、线性方程组、随机事件及其概率、随机变量及其数字特征、几种重要的概率分布。本着“打好基础,够用为度”的原则,本书去掉了对于实际工作并不急需的某些内容与某些定理的严格证明,而用较多篇幅详细讲述那些急需的内容,讲得流畅,讲得透彻,实现“在战术上以多胜少”的策略。在内容编排上,本书做到了
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题.《矩阵特征值定位理论》共五章,包括预备知识、Ger.gorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toepl
本书属于“大学数学经典教材精选系列”。本书是《工科高等代数》教材的配套教辅,是作者多年高等代数课程教学和辅导实践的总结。全书分为行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换、多项式等7章,每章基本由大纲要求与考点提示、知识结构图释疑解难、典型题目类型分析、常
本书内容包括:行列式、矩阵、线性方程组与向量组的线性相关性、相似矩阵与二次型、线性空间与线性变换、数学软件Matlab简介与上机实验,书末附有常用“线性代数”英文专业词汇及部分习题参考答案与提示。