内容简介:本书包括矩阵及应用、行列式与线性方程组、n维向量与向量空间、相似矩阵与二次型及MATLAB解线性代数问题等五章,每一章都包括主观题和客观题。本书分为A、B两册,A册包含第一章、第三章和第五章,B册包含第二章和第四章。本书可作为高等院校非数学专业的本科学生学习线性代数课程的同步练习用书,也可作为准本书包括矩阵及
《近可积系统的轨道稳定性》研究近可积系统的轨道稳定性问题,包括KAM环面的存在性、有效稳定性和拟有效稳定性等问题.《近可积系统的轨道稳定性》涉猎了Hamilton系统、扭转映射、辛映射等通常形式和参数形式的多种近可积系统.从应用角度,《近可积系统的轨道稳定性》探讨了扰动氢原子的Hamilton系统和近可积小扭转映射的轨
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题.《矩阵特征值定位理论》共五章,包括预备知识、Ger.gorin圆盘定理与严格对角占优矩阵、Brauer卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非1特征值的定位与估计、Toepl
本书收集了国防科技大学2010年-2021年的线性代数课程期末考试题,含A)卷与B)卷,包括期末考试真题和解析两部分内容。
斐波那契数列产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,引出了一个充满奇趣的数列,它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。本书系统地介绍了斐波那契数列的性质和应用,将知识性与趣
本书主要分为五章,第一章矩阵,第二章行列式,第三章n维向量空间,第四章特征值与特征向量,第五章二次型。每章计划分为五个模块:基础知识结构图、基本内容精讲、典型例题选讲、基础习题精选、提高习题精选。基本知识结构图将每章的基本概念、定理、方法进行梳理,使读者对知识结构有个清晰的认识理解。基本内容精讲将知识内容分块整理,归纳
本教材为“十二五”普通高等教育本科***规划教材和“十三五”江苏省高等学校重点教材,本教材第二版获首届全国教材建设奖全国优秀教材二等奖.内容包括矩阵、n维向量、线性方程组、矩阵的特征值和特征向量、二次型.本教材不仅力求内容的科学性与系统性,而且注重代数概念的几何背景以及实际应用背景的介绍,以利于读者更好地理解和掌握线性
全书共分五章,内容包括:行列式、短阵、向量及线性方程组、矩的特征值和特征向量、二次型。各章的每节内容均配有典型例题,每章后都设置了涵盖全章知识点的习题并在书后附有答案与提示,便于读者学习参考。
线性代数是代数学方面的一门基础课,在近代数学及其它各学科中有着广泛的应用,已作为本科各专业的必修课程。本课程的任务是通过各种教学环节,使学生掌握线性代数的基本概念,基本理论和基本方法。学生着重学习常用的矩阵方法、线性方程组理论、向量及向量空间理论、特征值理论和二次型理论。课程旨在培养学生严密的数学推理能力,为学习后续课