本书涵盖了2016—2025年考研数学一、数学二、数学三的全部真题,精选了1987—2015年考研各卷种中有一定难度或代表性的真题,并配有详细解析,供考生进行练习.本书将真题按考点分类,每一节均分为十年真题、考点分析、知识梳理、方法探究、真题精选五个部分.不但梳理了《全国硕士研究生招生考试数学考试大纲》所要求的每一个知
加性数论和乘性数论是数论学科的两个重要分支。前者有哥德巴赫猜想、孪生素数猜想、华林问题、整数分拆问题、表整数为平方和问题等,后者有素数定理和狄利克雷定理等。本书研究的加乘方程是指加性方程和乘性方程联合起来的一类方程,是作者率先提出的一系列原创数论问题,它们也是华林问题、费尔马大定理、欧拉猜想、表整数为平方和、同余数、完
数学起源于五千年前的美索不达米亚,但作为将大小和方向融于一体的矢量概念,则直到19世纪才得到正式的命名。在它的辅助下,麦克斯韦的电磁理论、狄拉克的量子场论、诺特关于数学对称性与能量守恒的关联等重大发现不断突破了人们的认知。直至今日,全球定位系统、搜索引擎、人工智能生成文本等技术依然要仰仗矢量的强大作用。矢量和张量以及微
不变子空间和约化子空间问题是泛函分析中的一个基本问题。算子的交换子和相似度可以帮助理解算子的结构。Toplitz算子是算子理论中一类重要的算子。算子的相似性是泛函分析中与不变子空间和约化子空间问题相关的一个有趣的话题。该书总结了Bergman空间、Dirichlet空间等解析函数空间中的相似和约化子空间问题。研究方法包
本书介绍了微分方程的基本理论,及其在科学和工程中的应用。书中还介绍了微分方程的数值解法和应用数学计算软件求解微分方程。本书的特色有1.各节内容模块化,便于教师根据授课需求组织教学内容。2.使用数学计算软件辅助教学,降低学生的学习难度。3.附录包含简要的微积分基础,供学生查阅。4.各章末含研究课题,使学生体会数学研究的过
本书主要介绍图论的基本概念、理论和算法。涵盖图的概念与运算、树及其算法、最大流及其算法、遍历性及其算法、独立集及其算法、最大匹配及其算法、平面性及其算法、应用案例拓展等内容。每章配置了一定量的分层次、多题型的练习题。本书前两章为图与网络的基本概念及运算。自第三章始,每章节从实际问题出发,引出一个图论主题,建立相关概念和
本书将教你如何解决数学领域的各种问题,这些领域包括微积分、概率论、统计学与数据科学、图论、最优化以及几何学。你将从培养核心技能开始,学习Python科学栈中涵盖的各种包,包括NumPy、SciPy和Matplotlib。随着学习的深入,你将掌握微积分、概率论和网络(图论)等高级主题。在牢固掌握这些主题之后,你将了解Py
本书深入浅出地讲解了(一元)微积分的主要概念和核心思想,从基本函数出发,全面覆盖了极限、导数、积分、微分方程、参数方程等重要主题,运用图像、数值、代数方程和语言描述等多种方法来呈现,不仅详细介绍了微积分的理论知识,而且特别重视实际应用,同时配有大量练习,帮助读者提高计算能力和掌握解题方法。语言简洁流畅,内容通俗易懂,示
本书由华中师范大学数学与统计学学院3D教具项目组精心编写,专为大学“数学分析”与“高等数学”课程设计。针对微积分教学中复杂空间图形理解难和积分应用抽象等问题,项目组开发了包含20个3D模型的教具(涵盖平面、柱面、球面锥面、抛物面等五大类),并配套编写了这本习题讲义。全书精选典型习题,结合教具模型进行多角度解析,旨在直观
本书讨论矩阵分解、新型广义逆和偏序等相关问题。主要研究内容包括core-EP分解、EP-幂零分解和类极分解;WG逆、C-S逆、P-core逆和若干合成广义逆;core偏序、CL偏序、L*偏序、偏序不等式以及上述广义逆诱导的偏序和拟序;强core正交、C-S正交、弱群星矩阵等相关问题。