本书第一章首先介绍了Hamilton系统,包括有限维和无穷维。第二章引出了无穷维Hamilton算子,并对它的谱性质进行系统阐述。第三章和第四章分别介绍了无穷维Hamilton算子特征函数系的完备性和辛自伴性等内容。第五章和第六章分别介绍了无穷维Hamilton算子的数值域理论和不定度规空间中的应用等内容,体现了无穷维
《Hilbert型不等式的理论与应用.下册》利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式最佳常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的最
《Hilbert型不等式的理论与应用.上册》利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式最佳常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的最
本书主要内容包括复数与复变函数、解析函数、复变函数的积分、数项级数与幂级数、洛朗展式与孤立奇点、留数理论及其应用、共形映射、傅里叶变换与拉普拉斯变换等。本书借助犕犃犜犔犃犅等软件将复变函数的概念可视化,同时附有对复变函数论的发展具有奠基性贡献的数学名人简介。本书选取的例题比较丰富,由浅入深、易学易教,并适当增加了和数学
本书为数学分析的学习指导书,是丁彦恒、刘笑颖、吴刚编写的《数学分析讲义》第一、二、三卷的配套用书。主要内容除了经典的一元微积分、多元微积分、级数理论与含参积分之外,还包括拓扑空间的映射、流形及微分形式、流形上微分形式的积分、向量分析与场论、线性赋范空间中的微分学和傅里叶变换等。为了便于读者复习与自查,每一章(第16章除
本书是在作者近些年对“数学分析”和“数学分析选讲”两门课程的一些想法的基础上写成的,即对数学分析概念、内容、方法的一个总结。本书对数学分析的各个知识点进行了概括,附录给出了近年来一些重点高校数学专业硕士研究生人学考试的部分试题,通过这些试题,读者可以进行相应知识点的检验。
数学分析选讲是数学类专业最重要的基础课数学分析的后续课程,是为进一步夯实学生分析基础以及为学生考研做准备的一门课程。本书作为数学分析选讲课程的教材,内容涵盖了数学分析所有重要知识点。全书共有10章,分别为极限、一元函数连续性、一元函数微分学、一元函数积分学、实数的完备性、级数、多元函数极限与连续性、多元函数微分学、含参
本书系统总结了数学分析的基本概念、基本理论与方法,并以历年各高校的研究生入学考试真题作为典型例题介绍了数学分析解题的基本方法与技巧。由于数学分析的题目繁多,且研究生入学考试题目大多综合性较高,故在编写讲义时打破了原数学分析教材中各章节的次序,按照题型对相关内容进行了分类整理,从而为报考研究生的同学提供复习指导。本书可以
本书内容包括:函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分定积分,定积分的应用。微分方程,空间解析几何简介,多元函数微分学及其应用,二重积分等,书末还附有基本初等雨数图形、初等数学常用公式、习题参考答案。
本书的主要内容包括初等数学回顾、数列的极限、级数、函数的极限、连续函数、导数、中值定理及其应用、原函数、黎曼积分和简单的微分方程。