本书主要内容有:第一章线性空间与线性变换、第二章内积空间、第三章矩阵的标准形与矩阵分解、第四章矩阵函数及其应用、第五章特征值的估计与广义逆矩阵、综合模拟试卷,每章由知识结构框图、内容提要、解题方法归纳、典型例题解析和自测试题等五个部分构成,涵盖了矩阵论教材的主要知识点。
本书以群论真实的发展过程为基础,通过剖析群论创建中所涉核心数学家(牛顿、欧拉、拉格朗日、高斯、柯西、伽罗瓦等)的身世、风格、作用,多方面展示了群论发展的社会和文化氛围,以及群论创建者自身理性与非理性的交融过程,揭示原创力之根源。
本书主要研究方向是数论,并长期有兴趣于数学普及工作,著作主要有《不定方程》《数学竞赛上的数论问题》《构造法解题》《组合几何》等。数论,是一个重要的数学分支,肇源极古。数学竞赛中常常出现初等数论问题。本书通过数学竞赛问题介绍初等数论的一些基本概念和方法。
这是一本讲解机器数字化发展的图书,解读为何离散这个如此简单的理念却如此强大。全书共分为四大部分:第一部分介绍可靠计算要面临的各种障碍,如噪声、信号缺陷、量子隧穿等;第二部分讲解两个改变我们生活的基本概念,即傅里叶分析和噪声环境中的编码技术;第三部分则向更为复杂和有挑战的领域进军,详述当代科学知识的极限,讨论了本质上很难
离散数学是计算机类专业的重要专业基础课程,研究离散结构和相互关系的理论和方法,在专业教学的课程体系中具有重要的理论支撑作用。离散数学的综合、分析、推理等方法,在计算机科学的理论研究和技术开发中有着广泛的应用。本书系统介绍了离散数学的内容,全书共分11章,包括预备知识(矩阵和组合数学基础)、集合论、命题逻辑、谓词逻辑、关
离散数学是高等学校理工科部分专业的一门重要基础课程,作为计算机专业的核心基础课,部分非数学类专业、电子信息类专业也开设了此课程。本书主要特点有:(1)内容组织上层次分明,结构清晰;(2)叙述严谨,重点突出,深入浅出,便于自学;(3)对部分定理只给出直观解释,突出重点,避免舍本逐末;(4)精心挑选大量的例题与习题,以此培
本书由知识篇、方法篇、问题篇三部分组成,分别介绍了高中数学竞赛中与组合问题相关的基础知识、基本方法和几类常见的组合问题的解法。每个单元都配有例题和习题,习题均有解答。多数例题和习题选自近年来国内外数学竞赛中适当难度的试题,也包含少数IM0中较易的试题和作者自己编拟的问题。
本书通过一些有趣的数学问题和数学游戏,向读者比较通俗地介绍了一些图论的基本知识和图论中常用的初等方法,以扩大学习者的知识面,提高分析问题和解决问题的能力。
全书共分为四部分:第一部分(第1-3章)为集合论,着重介绍了集合、关系和映射;第二部分(第4、5章)为数理逻辑,着重介绍了命题逻辑和谓词逻辑;第三部分(第6-8章)为图论,着重介绍了图、欧拉图和哈密尔顿图、树、二部图和平面图等特殊图;第四部分(第9-11章)为代数系统,着重介绍了代数结构、环与域、格与布尔代数。每节后分
本书共14章,内容包含数学语言与证明方法、证明技巧、数理逻辑、集合与关系、函数、组合计数、图和树、容斥原理、递推方程与生成函数、初等数论、离散概率、代数系统等。本书体系严谨,文字精炼,内容翔实,例题丰富,注重与计算机科学技术的实际问题相结合,并选配了大量难度适当的习题,适合教学。此外,本书有配套的习题解答与学习指导等教