本书为浙江省一流课程“离散数学”配套教材、浙江省普通本科高校“十四五”重点立项建设教材。本书在注重离散数学体系的基础上,强化证明思想和方法的介绍,在讲解基本内容及基本概念的时候尽可能结合实例,重视理论和方法的实用性。本书系统地介绍了计算机科学与技术等相关专业所必需的离散数学知识,全书共6章。第1章介绍命题及命题逻辑;第
编码诞生于20世纪40年代末至50年代初,它利用代数、组合和数论等数学工具研究、构造纠错码,用于高效可靠地传输信息。编码很快发展成为数学与信息科学深度交叉融合的学科。本书介绍编码的基本内容,包括Hamming编码的原始创新思想、线性码、循环码、MacWilliams的两个定理、码的渐近性质。书中配备适量习题,可供读者学
本书主要介绍图论的基本概念、理论和算法。涵盖图的概念与运算、树及其算法、最大流及其算法、遍历性及其算法、独立集及其算法、最大匹配及其算法、平面性及其算法、应用案例拓展等内容。每章配置了一定量的分层次、多题型的练习题。本书前两章为图与网络的基本概念及运算。自第三章始,每章节从实际问题出发,引出一个图论主题,建立相关概念和
素数是从宇宙深处传来的神秘音乐,拨动着一代代数学家的心弦。追求知识和真理的执着精神驱使着他们在看似无序的素数世界中寻找着规律的真相。黎曼假设数学研究的珠峰,吸引了一代代数学家投身于数论研究中,其中不乏数学史上大名鼎鼎的人物。在破解这一谜题的过程中,人们发现它已经给通信、量子力学、计算机科学等领域带来了举足轻重的影响。本
本书是第六版,基本上保持了原书构架和风格,对内容作了微调,每章适当增加了习题,增加了附录五代数与人工智能的内容,适当补充了数字资源。本书主要内容是:多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间、双线性函数与辛空间、总习题,附录包括关于连加号、整数的可除性理论、代数基
本书讨论矩阵分解、新型广义逆和偏序等相关问题。主要研究内容包括core-EP分解、EP-幂零分解和类极分解;WG逆、C-S逆、P-core逆和若干合成广义逆;core偏序、CL偏序、L*偏序、偏序不等式以及上述广义逆诱导的偏序和拟序;强core正交、C-S正交、弱群星矩阵等相关问题。
本书共分八章。第一章为代数基础,介绍了学习本书所必需的预备知识。第二、三章介绍了有限域的基本性质,包括有限域的群结构、有限域的存在唯一性、迹、范数、基等内容。第四、五、六章介绍了有限域上的多项式,包括分圆多项式、线性化多项式、不可约多项式和置换多项式等,还给出了有限域上多项式的分解算法。第七章介绍了有限域上代数方程的求
本书是哈尔滨工业大学线性代数与空间解析几何教学团队编写《大学数学—线性代数与空间解析几何(第五版)》的配套作业集。作业集与教材章节相对应,涵盖了针对行列式、矩阵、几何向量、n维向量空间、线性方程组、特征值、特征向量及相似矩阵、线性空间与线性变换及二次型与二次曲面的习题。题型包括解答题、填空题、选择题和判断题。大部分解答
加性数论和乘性数论是数论学科的两个重要分支。前者有哥德巴赫猜想、孪生素数猜想、华林问题、整数分拆问题、表整数为平方和问题等,后者有素数定理和狄利克雷定理等。本书研究的加乘方程是指加性方程和乘性方程联合起来的一类方程,是作者率先提出的一系列原创数论问题,它们也是华林问题、费尔马大定理、欧拉猜想、表整数为平方和、同余数、完
本选题主要研究正则*-半群,广义正则*-半群以及弱Fountain半群这几类一元半群的结构理论和簇理论,分别用基本方式、覆盖方式和范畴方式给出这些一元半群类的代数结构,用泛代数手段和图论知识构作这些一元半群类的自由对象,解决它们的字问题。本选题试图对当前上述几类典型一元半群的研究成果做一个概括和总结,所阐述内容的一半以