无限维耗散动力系统是数学的一个重要分支,与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用。本书主要介绍无限维耗散动力系统并应用于不可压缩Navier-Stokes方程。主要内容包括无限维系统的全局吸引子、指数吸引子和惯性流形的基本概念、存在性、构造原理和稳定性,Lyapunov指数和吸引子的Haus
本书主要讲述了线性拓扑空间的基本知识及其在泛函分析中的应用;着重强调了线性拓扑空间在分析学,尤其是在泛函分析中的重要性。本书内容涵盖了与泛函分析紧密相关的诸多主题,如线性算子的连续性和有界性、Hahn-Banach定理、弱拓扑和*弱拓扑,以及赋范空间中的弱紧性和弱列紧性等。此外,本书中还特别介绍了赋β-范空间,这是一类
本书秉持学为中心理念,用一个梦游故事串联了复变函数与积分变换课程的主要知识点,包括复数和复变函数、导数、积分、级数、留数、保形映射、傅里叶变换和拉普拉斯变换等内容。本书模糊了时空概念,强调知识体系所蕴含的科学思想方法、内在逻辑性以及表达的趣味性,本书采用章回体小说的形式,用近乎荒诞的故事和诙谐幽默的语言,解释了复变函数
无穷遍历理论是研究无穷测度空间中的保测变换的理论。本书着重介绍了无穷保测变换的特殊性质。本书适合对遍历理论、动力系统和概率论感兴趣的研究生以及数学研究人员阅读参考。Infiniteergodictheoryisthestudyofmeasurepreservingtransformationsofinfinitemea
本书介绍了非线性色散方程理论的最新进展,主要是非线性薛定谔方程。本书适合对偏微分方程及其相关领域感兴趣的研究生和数学研究人员阅读参考。Thisvolumepresentsrecentprogressinthetheoryofnonlineardispersiveequations,primarilythenonline
测地流是现代动力系统理论体系中最重要的研究课题之一,其动力学理论已发展成为融合黎曼几何、芬斯勒几何、微分动力系统、哈密顿系统、辛几何、拓扑学等多个领域的前沿交叉学科。本书着重介绍了双曲流形的几何性质;在此基础上,研究了双曲流形上测地流的一致双曲性、拓扑动力学和遍历性等动力学性质。在内容上,本书十分强调几何直观,兼顾表述
本书介绍了KodairaSpencer复结构变形理论,给出了Kodaira嵌入定理的原始证明,还包括了Kuranishi的半连续性定理和局部完备性定理。本书适合对抽象复流形及相关知识感兴趣的研究生以及数学研究人员阅读参考。Themainpurposeofthisbookistogiveanintroductiontot
本书主要介绍作者和国内外同行在椭圆方程有限元逐点超收敛领域中取得的研究成果,书中绝大部分内容是作者及其合作者二十年来在该领域的研究所得。本书主要内容是基于“离散格林函数——两个基本估计”这一框架,以投影型插值算子和权函数为主要分析工具,深入系统地研究了椭圆方程有限元的逐点超收敛性。书中的研究方法和成果可以运用到发展型偏
本书发展了处理非线性常微分方程和偏微分方程的拓扑和解析方法。本书适合对泛函分析感兴趣的研究生和数学研究人员阅读参考。SinceitsfirstappearanceasasetoflecturenotespublishedbytheCourantInstitutein1974,thisbookhasservedasani
本书共分16讲,对应大一下学期16次工科数学分析习题课,内容涉及向量代数与空间解析几何、多元函数微分学及其应用、多元函数积分学及其应用、无穷级数等。每一讲的内容主要包括知识点小结、典型例题解析、练习题三部分,其中典型例题大都来自历年的考研题、有关学校的期中期末试题,题型丰富,既包括选择题、填空题,还包括计算题和证明题,