本书包括函数、极限与连续、导数与微分、微分中值定理与导数的应用、一元函数积分学、上册自测题等内容。本书内容按章节编写,与教程篇同步。每章开头是知识结构图、学习目标,每节包含知识点分析、典例解析、习题、习题详解四个部分,每章最后配有本章练习题及其答案。本书融入了编者多年来的教学经验,汲取了众多参考书的优点,注重概括总结、
本书包括多元函数微分学、二重积分、无穷级数、微积分在经济中的应用、下册自测题等内容。本书内容按章节编写,与教程篇同步。每章开头是知识结构图、学习目标,每节包含知识点分析、典例解析、习题、习题详解四个部分,每章最后配有本章练习题及其答案。本书融入了编者多年来的教学经验,汲取了众多参考书的优点,注重概括总结、循序渐进、突出
本书是关于超奇异积分的数值计算及其应用方面的专著,全书共8章:第1章为引言,简要介绍超奇异积分的由来,使读者可以轻松地阅读本书;第2章阐述边界归化方法和典型域上的超奇异积分方程,详细介绍区间上和圆周上超奇异积分方程的引入,以及求解超奇异积分方程的经典方法;第3章介绍超奇异积分的定义,并阐述不同的定义在一定条件下是等价的
作为此前出版的《非线性常微分方程边值问题》研究内容的后续进展,本书是作者十余年来在常微分方程和时滞微分方程周期轨道方面所作研究工作的总结.在介绍临界点理论和指标理论的基础上,对常用的指标理论和指标理论作出推广,提出和论证了Zn指标理论和Sn指标理论,拓展了应用范围.对不同类型的时滞微分方程通过选定相应的Hilbert空
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及数学类、大气科学类等专业的需要而编写的。本书以方法为主线,内容包括典型模型定解问题的建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数与勒让德函数的
本书按照《工科数学分析(下册)》的章节顺序编排,给出习题全解。内容侧重刻画多变量函数的微积分学,从向量代数与空间解析几何开始,囊括多元函数微分学、重积分、曲线积分与曲面积分和级数性。
深水中的Benjamin-Ono(BO)方程是一类非常重要的非线性色散方程,具有广泛的物理背景和应用背景。该类方程存在一类具有有限分式的代数孤立子,并且属于可积系统。本书给出该类方程的物理背景并阐述其怪波解,着重研究几种重要类型的BO方程的数学理论,其中包括在能量空间和Bourgain空间上的整体解的存在性、**性和低
本书以反散射理论、Riemann-Hilbert方法、Deift-Zhou非线性速降法和速降法为分析工具,系统阐述这些方法在可积系统、正交多项式和随机矩阵理论方面的应用.主题部分取材于Deift、McLaughlin、Biondini、Jenkins等一些学者近年来**前沿成果.内容主要包括Riemann-Hilber
本书系统阐述了逆问题求解的贝叶斯框架原理、方法及其应用。全书分为4个部分,共计14章,主要内容包括逆问题与不适定问题描述、正则化方法、基于概率框架的逆问题求解、解卷积方法、逆问题求解的高级进阶方法以及逆问题在超声波无损检测、大气湍流光学成像、衍射层析、低强度数据成像等领域中的典型应用。
本书给出了多元双正交(M,R)插值型可加细函数向量的概念和构造mask的方法、数值例子、满足双正交的必要条件等;从Box样条出发,构造了以平行六边形为周期的双正交插值小波,并根据具体的Box样条函数给出了具体的插值型双正交Box样条小波,推导出了以平行六边形为周期的双正交小波分解重构公式的快速实现方法;根据手指静脉图像