本书阐述了新型矢-栅紧密结合型数据模型:“矢量为体,栅格为用;矢栅互换,利用长处”,从而铺垫了解算复杂空间问题的“0”初始化计算途径;提出了地图代数的ESPO方法。
Thisbookgivesthebasicnotionsofdifferentialgeometry,suchasthemetrictensor,theRiemanncurvaturetensor,thefundamentalformsofasurface,covariantderivatives,andthefund
本书是莫斯科大学数学力学系对几何课程现代化改革的成果。作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求从直观的和物理的视角阐述,内容包括张量分析,曲线和曲面几何,一维和高维变分法(第一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求从直观的和物理的视角阐述,内容包括张量分析,曲线和曲面几何,一维和高维变分法(第一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
《黎曼·芬斯勒几何基础》是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,
本书在介绍度量空间之后,引入拓扑空间,然后叙述拓扑空间的连续映射和同胚、紧致性、连通性、乘积空间和商空间;从单形入手介绍单纯复形和多面体的概念和性质、重心、重分和单纯逼近存在定理;基本群定义及其同伦等价不变性、计算方法和一些计算结果的应用;在单纯同调群之后介绍奇异同调群及其同伦等价不变性、同调群的正合序列、切除定理。第
本书内容是“工程图学”的基础。适用于工科高等院校各专业,也适用于综合性大学、电大、职业技术学院、成人教育学院理工专业。包括绪论、点直线平面、投影变换、曲线与曲面、立体、轴测投影6部分内容。
第一版是普通高等教育“九五”国家重点教材,全书按照教学基本要求编写,论证严谨、条理清晰,讲法深入浅出,突出几何直观性,重视高等几何对中学数学的指导作用。较同类书之不同,《高等几何(第2版)》增设了“高等几何与中学几何”一章,为高师教学改革做出了有益的尝试,使教学内容能更直接地为中学教学服务,也是《高等几何(第2版)》的
本书是吕林根、许子道编的《解析几何》(第四版)的配套学习辅导书,全书与教材一样分为六章,即向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线的一般理论与二次曲面的一般理论。每章由五部分组成,即内容概述、学习要求、学习辅导、例题分析和复习与测试。学习辅导紧扣教材,环绕教材中的重点与难点进行辅
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,最近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。