一、从43篇已发表的论文中挑选10~12篇。主要内容包括三个方面。(1)有限维野遗传代数Coxeter函子的特征值及其AR-箭图正则分支的结构,其中的模有合成因子确定;任意野Artin代数AR-箭图的正则分支的结构。(2)若干范畴之间几乎可裂序列的一一对应;k-有理函数域上k-代数的表示。(3)一个强齐性范畴的例子;矩
广义膨胀和齐性:利用齐性构造齐次系统的李雅普诺夫函数和控制律(英文)》是一部英文版数学专著,中文书名可译为《广义膨胀和齐性:利用齐性构造齐次系统的李雅普诺夫函数和控制律》。《广义膨胀和齐性:利用齐性构造齐次系统的李雅普诺夫函数和控制律(英文)》的作者是S.埃姆雷·图纳教授,他1979年出生于土耳其的伊斯肯
本书以讲述线性空间及其线性映射为主线,遵循高等代数知识的内在规律和读者的认知规律安排内容体系,按照数学思维方式展开,着重培养数学思维能力。内容包括:多项式、行列式、矩阵、线性空间和线性变换、特征值、相似标准型、二次型、内积空间和双线性型等。本书将思维与方法渗入到实例分析中,使读者在学习高等代数知识的同时,掌握高等代数的
本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。本书是作者根据多年教学经验,在原有讲义基础上经过修改、补充而成的。书中介绍了代数学的基本知识:第一至第七章给出群、环、模、域四个基本的代数结构及其性质;第八章介绍伽罗瓦理论;第九章是多重线性代数初步。各章后配有相当数量的习
高等代数是大学数学各专业的重要的基础课程之一,也是数学各专业考研的必考科目之一。高等代数的主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、A-矩阵、欧氏空间与双线性函数等。高等代数由于概念理论较为抽象,体系繁杂,内容具有一定的概括性和抽象性、解题的思想方法灵活多变等特点,同学们学习本门课程感到
离散数学是计算机相关专业的主干课程之一。本书将理论紧密联系实际,摒弃了一些烦琐的定理证明,从工程实际出发,引入工程案例和解决方案,注重提升学生的应用模拟解题技巧,力求做到脉络清晰,重点突出,精讲多练,实用有效,从而培养学生的抽象思维和缜密概括能力。 本书内容包括离散数学4大分支的基础理论——数理逻辑、集合论、代数系统和
本书面向“新工科”建设背景下普通高等学校的计算机类和软件工程专业类的本科生,以培养学生离散建模基础能力为目标,论述逻辑、证明、集合、函数、关系、算法、整数与同余、组合计数、图论以及代数系统相关基础知识,覆盖ComputerScienceCurricula2013离散结构知识体的所有知识单元。与传统离散数学教材相比,
本书是创新方法工作专项项目科学思维、科学方法在高等学校教学创新中的应用与实践KM教学法的研究与实践的主要研究成果之一,本书共分四篇:*篇为数理逻辑,包括命题罗辑和谓词逻辑;第二篇为集合论,包括集合、二元关系、函数、集合的基数;第三篇为代数结构,包括代数系统、群论初步、格与布尔代数;第四篇为图论,包括图、图的连通性、图的
本书是南开大学代数类课程整体规划系列教材的第四本,是在作者多年从事代数类系列课程的教学过程中逐渐完成的.在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照有限群表示论发展的主要脉络来安排本书的内容全书分为8章,包括预备知识、表示论的基本概念、特征标、McKay对应、群代数、对称群与交错群的表示、诱导表示和
经典数论的主要内容既包括整数理论、同余理论、一次到n次剩余方程、丢番图方程、佩尔方程、连分数、原根与指数,也包括费尔马-欧拉定理、威尔逊-高斯定理、秦九韶定理(中国剩余定理)、勒让德符号与二次互反律、表整数为平方和、荷斯泰荷姆定理等.此外,它还伴随着遐迩闻名的完美数问题、同余数问题、费尔马大定理、哥德巴赫猜想、孪生素数