本书介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 本书旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,本书在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。本书的第5章不是本科生必须学习的内容,仅
每年都会有来自全球各地学习数学的学生和教师聚集在奇妙的数学暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年奇解题训学暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题
外太空是什么样子?未来城是一座什么样的城市?在这个故事中,小主人公和小伙伴们一起来到了未来城,开启了设计建造模式。他们在未来城里建造了新学校、新教室、新图书馆等,构建了一座全新的未来城。在建造的过程中,几位小伙伴同心协力,一起设计、测量、画图、建造。其间他们会遇到一些难题,需要从数学的角度来思考,一起应用数学来解决。神
本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由JacquesTits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学
本书旨在引导学生初步掌握数学建模的思想和方法,着重介绍常见的数学建模方法以及在实际问题中的应用,主要内容包括:线性规划模型、非线性规划模型、微分方程模型、回归模型、时间序列模型、多元统计分析模型、综合评价模型、模糊理论模型、灰色系统模型等。本书将适当介绍数学建模方法在各领域的最新应用,并对每一类模型,都会给出相关的案例
本书作者致力于将Steiner树问题的研究与网络构建问题相结合,系统地探讨Steiner树问题的多种变形及其构建策略。本书具体涵盖欧几里得平面上Steiner树构建的两大核心问题:最小费用Steiner点和边问题(简称MCSPE)以及最小费用Steiner点和材料根数问题(简称MCSPPSM)。本书还讨论了网格分层思想
本书内容包括:绪论、基于H-Hk结构的算子型最小范数解析解、基于Kriging插值模型的最小范数插值解、基于高斯过程回归模型的最小范数正则解、基于高斯过程回归模型的有限维逼近解、Burgers方程算例分析。
本套教材包含微分方程的基础内容,分上、下册。上册主要内容为常微分方程理论基础,包括基本概念、初等积分法、高阶线性微分方程、常微分方程组、基本定理、定性和稳定性理论初步、离散动力系统简介等。下册主要内容为偏微分方程理论,包括绪论、一阶偏微分方程、二阶线性偏微分方程的经典理论、偏微分方程解的性质、广义函数及Sobolev空
德国数学家RobertFricke(1861-1930年)以其对椭圆函数和模形式的研究而闻名。他与著名数学家FelixKlein合作,共同推动了该领域的发展。他最著名的著作之一就是三卷本《椭圆函数及其应用》,被广泛认为是椭圆函数领域的经典之作。他的著作不仅在当时引起了极大的关注,而且至今仍然是该领域的重要参考资料。本书
本书共4套试卷,针对考数学(三)的考生,参照考研数学真题编写,力求符合命题规律和命题风格。在书稿编排上,试卷每题留白,供考生自测。试卷答案及解析提供解题思路,给出详细答题步骤,分析题目特点,让考生能够举一反三。考生可以通过做题、听讲解课,熟悉考试题型,掌握学习方法、形成数学思维。本书试题难度稍高于市面上的同类产品,读者