数学分析的主要目的就是以极限为工具,研究函数的分析运算性质。本书内容包括实数域和初等函数,数列的极限,函数的极限和连续性,函数的导数及导数的应用,一元微分学中的Taylor定理,求导的逆运算,函数的积分,积分学的应用,级数理论,多元函数及其微分学,多元函数微分法的应用,重积分曲线积分、曲面积分等。本书在内容的安排上,深
本书是我国著名数学家熊庆来先生的一本代表作,全书共分十三章,主要介绍了高等代数中的基础知识及内容,同时配以相应的习题,,以供读者更好的理解. 本书适合大中学师生及数学爱好者参考阅读.
本书是两册泛函分析教材中的上册,系统地介绍了线性泛函分析的基础知识。全书共分四章:度量空间、线性算子与线性泛函、紧算子与Fredholm算子,以及广义函数与Sobolev空间。本书的主要特点是侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其他分支的联系。
本书是一本不等式方面的专著。本书中介绍的许多方法都是初等的,但使用的非常巧妙。这不禁使笔者想起杨学枝先生(前福州二十五中副校长)利用初等方法解决的一个在国际双微(微分方程,微分几何)会议中被提出的一个不等式证明方面的难题。
本书是五卷本的《数学不等式》中的第三卷。因为时间关系,想让它尽快与中国的广大不等式爱好者见面,所以这一版本是英文影印版。随后我们会出中文版,翻译工作已经完成,正在进行后面的排版、校对、印刷等工作,敬请期待。 不等式这个专题一直是数学奥林匹克命题中的常见素材,许多奥林匹克数学竞赛教练都写过这方面的培训教材。
本书是根据教育部制定的《高职高专教育高等数学课程教学基本要求》,在认真总结高职院校教改经验的基础上编写修订而成的。本书坚持贯彻“以应用为目的,以必需、够用为度”的原则,贴近高职院校学生数学的实际水平,在保证科学性的基础上,注意讲清概念,减少数学理论的推证,阐述清晰、通俗、易懂,注重对学生基本运算能力和分析问题、解决问题
郭柏灵论文集第十四卷收集的是郭柏灵先生发表于2016年度的主要科研论文,涉及的方程范围宽广,有确定性偏微分方程和随机偏微分方程,研究的问题包括适定性、爆破性、渐近性、孤立波等.
本书以漫画形式讲解初中数学中的函数知识,旨在让数学公式、函数、图形等知识点的学习更容易、更有趣,培养数学思维、函数思维。本书内容以初中阶段函数学习为主,从身边的现象切入,讲解比例、一次函数、二次函数的重点和难点,知识链前承小学算术,后接高中数学。
本书包括了多种类型的非线性常微分方程、分数微分方程、分数积一微分方程、分数脉冲微分方程、量子微分方程等,通过应用单调迭代方法,介绍了所列非线性微分方程解存在性的基本理论,包括解的存在性、唯一性、多解性、收敛到解的单调迭代序列和误差估计等。
本书主要讲授Lebesgue测度与积分理论的基本内容。全书共6章,内容包括集合论初步、可测集、可测函数、可积函数、微分与积分、空间。本书力求用简明的语言阐述Lebesgue测度与积分理论的主要思想和方法,注重基本概念的讲解和基本方法的介绍,特别注重讲透Lebesgue积分理论与Riemann积分理论的区别和联系。本书还