本书是安徽省应用型本科高校联盟教材,分上、下两册出版。上册的主要内容为函数与极限、一元函数微分学、一元函数积分学、常微分方程;《应用高等数学(下)》主要内容为向量代数与空间解析几何、多元函数微分学、重积分、曲线与曲面积分、无穷级数、MATLAB在高等数学中的应用。以案例教学为中心,注重培养学生运用数学知识和方法解决问题
《微积分》分上、下两册,本书为上册。上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分和定积分等内容。书中例题、习题较多,除每节配有习题外,在每章最后都配有适量的总习题,分为A、B两类,其中A类为基本题,B类是提高题。书末附有部分习题答案与提示。
2007年,陶哲轩创立了一个内容丰富的数学博客,内容从他自己的研究工作和其他新近的数学进展,到他的授课讲义,包括各种非专业性难题和说明文章。头两年的博文已由美国数学会出版,而第三年的博文将分两册出版。*册内容由实分析第二教程和博文中的相关资料构成。实分析课程假定读者对一般测度论和本科分析的基本概念已有一定的了解。本书内
度量几何是建立在拓扑空间长度概念基础之上的处理几何的方法,这种方法在*近几十年飞速发展,并渗透到诸如群论、动力系统和偏微分方程等其他数学学科。这本研究生教材有两个目标:详细阐述长度空间理论中使用的基本概念和技巧,以及更一般地,为大量不同的几何论题提供一个初等导引,这些论题都与距离观念相关,包括黎曼度量和Carnot-C
线性代数
本书首先介绍了集合论和拓扑学的基础知识,然后结合微积分的发展简史与不完善之 处,从分析学的角度系统地介绍了实变函数的基本理论框架.全书所列内容均由作者多年讲 义结合国际上*的《实分析》教材内容整理而成,辅以数学史的注解,对初学者真正学懂 这门专业课十分有益.
本书介绍了图论的基本概念,解释了图论中各种经典问题。例如,熄灯的问题、小生成树问题、哥尼斯堡七桥问题、中国邮递员问题、国际象棋中马的遍历问题和路的着色问题等等。书中也给出了各种类型的图,例如,二部图、欧拉图、彼得森图和树;等等。每一章都为读者设置了练习题,包含了具有挑战性的探索性问题。
高等数学习题课讲义(第三版)
传统傅里叶分析使用线性相函数来研究函数,在许多场合都非常有效。例如涉及算术数列的一些问题很自然地会使用二阶或更高阶的位相。高阶傅里叶分析近年来才变得十分活跃起来。Gowers在其开创性工作中发展了这个理论的许多基本概念,其目的是为了给关于算术数列的Szemerédi定理一个全新和量化的证明。但是在Weyl