本书主要讨论经典李群方法在微分方程中的应用,内容涵盖了微分方程的李群方法的一些**研究成果.除绪论外,全书共6章,基本内容包括与李群方法相关的基本概念、多种类型微分方程的李群分析、偏微分方程守恒向量的构造和精确解的求解,以及李群方法的其他应用.本书系统性强,各章节自成体系又相互联系.在内容叙述和安排上,尽量采用通俗易懂
数学物理反问题(也包括地球科学反演)已成为应用数学发展和成长最快的领域之一.基于模型驱动的传统科学和基于大数据分析的人工智能领域,都要求求解反问题.该书把地球科学反演问题高度概括,以第一类算子方程作为基本问题描述的出发点,系统开展反问题的基本理论、重要方法和应用研究描述.该书涵盖了反演领域的大部分知识点,包括反问题的不
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性
本书系统完整地介绍了测度论和概率论的基础知识.前5章介绍一般可测空间和Hausdorff空间上的测度与积分,包括局部紧拓扑群上的Haar测度.第6章介绍距离空间上测度的弱收敛和局部紧Hausdorff空间上测度的淡收敛,第7章介绍与测度论有关的概率论基础,第8章介绍离散时间鞅的基本理论,第9章介绍Hilbert空间和B
本书获得1994年美国数学协会Beckenbach图书奖!在这本经典著作的第二版中,StevenKrantz扩充了有关经典非欧几何的内容。他展示了如何从复圆盘的不变几何中,以一种自然的方式发展非欧几何。他还介绍了Bergman核和度量,给出深刻的应用,其中一些从未出版过。总的来说,在*版成功的基础上,新版做了大量的修改
《复分析入门(英文)》是一部版权引进自国外的英文原版大学数学专业课教材,中文书名可译为《复分析入门》。作者为O.卡鲁斯·麦基希(O.CarruthMcGehee)教授,他是美国路易斯安那州立大学数学教授,麦基希教授在该书的前言中写了致学生,关于阅读该书的先决条件。他指出:《复分析入门(英文)》主要用于四分之一学期或一学
本书初版于1979年出版,荣获第一届国家教委高等学校优秀教材二等奖,后多次再版,被许多高校选作教材,受到同行和广大读者的欢迎。全书主要内容包括复数与复变函数、解析函数、复变函数的积分、解析函数的幂级数表示法、解析函数的洛朗展式与孤立奇点、留数理论及其应用、共形映射、解析延拓和调和函数等九章,其中加*号的内容,供学有余力
本书以Atiyah-Singer指标定理为主线,用浅显易懂的语言,从三角形内角和定理出发,深入浅出地介绍了经典的Gauss-Bonnet公式、Riemann-Roch定理及其高维的推广、同调理论,特别是deRham上同调、层的上同调、陈省身-Weil理论等,同时还介绍了这些数学珍品产生的历史背景。本书是相关理论的一本很
本书力求对分数阶偏微分方程的有限差分方法做一个系统的介绍。全书分为6章。第1章介绍四种分数阶导数的定义,给出两类分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解。这些是后面章节中分数阶偏微分方程数值解的基础。接着的5章依次论述求解时间分数阶
本书是在复分析领域产生了广泛影响的一本著作.作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美.书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。