本书是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析III》)的基础上编写的。它是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与
本书共分为5章,主要概括如下:第1章介绍全书的基本概念和符号,包括半群、自由半群、本原字、代数码的运算。第2章介绍自动机基本理论。第1节介绍自动机的定义和表达方式、可识别语言等概念,以及著名的Pumping引理。第2节介绍语言的正则性和可识别性等价。第3节介绍语言的可识别性和有理性等价,进而得到语言的正则性、可识别性和
"数学文化"是面向所有专业大学生(本、专科生及研究生)和社会公众开放的素质教育通识课。教材共十三章,包括:关于数学文化欣赏、数学美学欣赏、数论与数学文化、古希腊数学与人类文明、斐波那契数列与黄金比、奇妙的幻方、数学悖论与数学危机、数学魅力之文学欣赏、数学与艺术欣赏、数学问题、数学猜想与数学发展、变量数学的产生与发展、中
?高等数学(第2版)?是编者团队根据多年的教育教学的实践积累,按照新时代教材改革的要求,针对目前高校非数学类理工科及管理类相关专业学生的需要,结合多年的教学经验和体会,对高等数学的相关内容进行合理的取舍和编排,并融入相关的教学研究与实践成果编写而成的.本书分上下两册.上册共有七章,内容包括:函数、极限、连续,导数与微分
《凸优化的分裂收缩算法》以简明统一的方式介绍了用于求解线性约束凸优化问题的分裂收缩算法。我们以变分不等式(VI)和邻近点算法(PPA)为基本工具,构建了求解线性约束凸优化问题的分裂收缩算法统一框架。在该框架中,所有迭代算法的基本步骤包括预测和校正,分裂是指通过求解(往往有闭式解的)的凸优化子问题来实现迭代的预测;收缩指
九篇交叉学科学术论文,分别由各个方向的数学专家撰写,向你展示蕴于艺术的数学、数学带给我们的美学体验,以及如何借由艺术的感性形式传达数学的理性思想。上至文艺复兴时期的大师之作,下至当代数学家闲时创作的艺术作品,都与严谨的数学推导密不可分。
《线性代数9讲》由著名辅导名师张宇领衔编写,本书创新采用乐"模块化强化教学法"的科学备考方案,将线性代数的考研内容按专题梳理划分为9个核心模块,并独创特征值应用场景矩阵。每章节的内容中,【思维导图】厘清知识脉络,【考点精讲】汇总高频失误案例。本书还特别配备了强化阶段题库,基础巩固题、综合提升题、压轴突破题按比例科学配比
本书包含了集合论与图论课程需涵盖的概念、理论、方法和应用,主要包括两部分:集合论与图论。集合论部分主要包括集合及其运算、映射及其合成、关系及其运算、无穷集合及其基数;图论主要包括图的一些基本概念、一些特殊的图、树及其性质、割点和桥、连通度和匹配、平面图和图的着色、有向图等。
数学不仅仅是抽象的公式和逻辑运算,它的背后蕴藏着人类文明的智慧结晶和思维之美。本书精选小学阶段的数学核心概念,通过历史脉络与生活情境,带领读者探索数学原理的起源、推导过程以及实际应用。 全书从人类计数系统的演进讲起,系统介绍时间、质量、长度、货币等计量单位的标准化历程,阐释数学如何从实际需求中产生。在算术领域,通过自然
本书面向理工非数学类专业本科生。书中包含微积分在工程、管理及其他领域中的应用实例,通过对实际应用问题、数学建模例题的讲述,提高学生的学习兴趣并培养其应用数学知识解决实际问题的能力。本书配置丰富的数字资源,包括典型例题、习题讲解,每节预习检测,数学应用